Yi-Fan Wang , Zuo-Bei Wang , Yong-Hui Zhang , You-Gui Huang , Xin Ye , Wei Wang
{"title":"低Mg2+掺杂促进方解石对磷酸盐的吸附。","authors":"Yi-Fan Wang , Zuo-Bei Wang , Yong-Hui Zhang , You-Gui Huang , Xin Ye , Wei Wang","doi":"10.1016/j.envres.2024.120692","DOIUrl":null,"url":null,"abstract":"<div><div>Calcite is a promising material choice for adsorbing phosphates because of its abundance and environmentally benign nature. However, the slow adsorption kinetics and hence low adsorption capacity within a short time frame hinders its practical application. In this work, we solve these problems by presenting a low Mg<sup>2+</sup>-doped calcite adsorbent, Mg-10. With a 3.75 wt% of Mg<sup>2+</sup> doping, Mg-10 exhibits a remarkable adsorption capacity of 157.7 mg P/g. It also demonstrates a substantial boost in the adsorption kinetics, achieving a sixfold increase in adsorption capacity within 24 h compared to the undoped calcite. Meanwhile, Mg-10 not only offers improved adsorption selectivity but also maintains a stable effluent pH, underscoring its environmental compatibility. By conducting soil column experiments, we find that Mg-10 quickly captures the excess phosphates during the mimicking fertilization process, and slowly releases the nutrient afterwards, which can increase the feralization efficiency. These results provide alternative strategies for managing phosphate pollution originated from fertilization, and underscores the potential of Mg-10 in sustainable agriculture and environmental remediation.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"267 ","pages":"Article 120692"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting the phosphate adsorption of calcite by low Mg2+-Doping\",\"authors\":\"Yi-Fan Wang , Zuo-Bei Wang , Yong-Hui Zhang , You-Gui Huang , Xin Ye , Wei Wang\",\"doi\":\"10.1016/j.envres.2024.120692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Calcite is a promising material choice for adsorbing phosphates because of its abundance and environmentally benign nature. However, the slow adsorption kinetics and hence low adsorption capacity within a short time frame hinders its practical application. In this work, we solve these problems by presenting a low Mg<sup>2+</sup>-doped calcite adsorbent, Mg-10. With a 3.75 wt% of Mg<sup>2+</sup> doping, Mg-10 exhibits a remarkable adsorption capacity of 157.7 mg P/g. It also demonstrates a substantial boost in the adsorption kinetics, achieving a sixfold increase in adsorption capacity within 24 h compared to the undoped calcite. Meanwhile, Mg-10 not only offers improved adsorption selectivity but also maintains a stable effluent pH, underscoring its environmental compatibility. By conducting soil column experiments, we find that Mg-10 quickly captures the excess phosphates during the mimicking fertilization process, and slowly releases the nutrient afterwards, which can increase the feralization efficiency. These results provide alternative strategies for managing phosphate pollution originated from fertilization, and underscores the potential of Mg-10 in sustainable agriculture and environmental remediation.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"267 \",\"pages\":\"Article 120692\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124025969\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124025969","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Boosting the phosphate adsorption of calcite by low Mg2+-Doping
Calcite is a promising material choice for adsorbing phosphates because of its abundance and environmentally benign nature. However, the slow adsorption kinetics and hence low adsorption capacity within a short time frame hinders its practical application. In this work, we solve these problems by presenting a low Mg2+-doped calcite adsorbent, Mg-10. With a 3.75 wt% of Mg2+ doping, Mg-10 exhibits a remarkable adsorption capacity of 157.7 mg P/g. It also demonstrates a substantial boost in the adsorption kinetics, achieving a sixfold increase in adsorption capacity within 24 h compared to the undoped calcite. Meanwhile, Mg-10 not only offers improved adsorption selectivity but also maintains a stable effluent pH, underscoring its environmental compatibility. By conducting soil column experiments, we find that Mg-10 quickly captures the excess phosphates during the mimicking fertilization process, and slowly releases the nutrient afterwards, which can increase the feralization efficiency. These results provide alternative strategies for managing phosphate pollution originated from fertilization, and underscores the potential of Mg-10 in sustainable agriculture and environmental remediation.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.