超级电容器电极用四方氧化钨:相驱动电荷存储机理及功函数控制研究。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Sk. Khaja Hussain, Min Soo Kim, Raju Thota, Sang-Woo Joo, Jin Ho Bang
{"title":"超级电容器电极用四方氧化钨:相驱动电荷存储机理及功函数控制研究。","authors":"Sk. Khaja Hussain,&nbsp;Min Soo Kim,&nbsp;Raju Thota,&nbsp;Sang-Woo Joo,&nbsp;Jin Ho Bang","doi":"10.1002/smtd.202401854","DOIUrl":null,"url":null,"abstract":"<p>The crystal phase of pseudocapacitive materials significantly influences charge storage kinetics and capacitance; yet, the underlying mechanisms remain poorly understood. This study focuses on tungsten oxide (WO<sub>3</sub>), a material exhibiting multiple crystal phases with potential for energy storage. Despite extensive research on WO<sub>3</sub>, the impact of different crystal structures on charge storage properties remains largely unexplored. Here, the successful synthesis and electrochemical characterization of tetragonal WO<sub>3</sub> are reported. This investigation demonstrates that tetragonal WO<sub>3</sub> exhibits superior energy storage capabilities compared to other WO<sub>3</sub> polymorphs. According to in situ Raman spectroscopy and ultraviolet photoelectron spectroscopy combined with in-depth electrochemical analyses, this enhancement is attributed to a unique charge storage mechanism and an expanded potential window facilitated by an engineered electrode work function. This study highlights the critical role of the crystal phase in optimizing the performance of pseudocapacitive materials and provides valuable insights for the development of next-generation energy storage devices.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 7","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tetragonal Tungsten Oxide for Supercapacitor Electrodes: Study of Phase-Driven Charge Storage Mechanism and Work Function Control\",\"authors\":\"Sk. Khaja Hussain,&nbsp;Min Soo Kim,&nbsp;Raju Thota,&nbsp;Sang-Woo Joo,&nbsp;Jin Ho Bang\",\"doi\":\"10.1002/smtd.202401854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The crystal phase of pseudocapacitive materials significantly influences charge storage kinetics and capacitance; yet, the underlying mechanisms remain poorly understood. This study focuses on tungsten oxide (WO<sub>3</sub>), a material exhibiting multiple crystal phases with potential for energy storage. Despite extensive research on WO<sub>3</sub>, the impact of different crystal structures on charge storage properties remains largely unexplored. Here, the successful synthesis and electrochemical characterization of tetragonal WO<sub>3</sub> are reported. This investigation demonstrates that tetragonal WO<sub>3</sub> exhibits superior energy storage capabilities compared to other WO<sub>3</sub> polymorphs. According to in situ Raman spectroscopy and ultraviolet photoelectron spectroscopy combined with in-depth electrochemical analyses, this enhancement is attributed to a unique charge storage mechanism and an expanded potential window facilitated by an engineered electrode work function. This study highlights the critical role of the crystal phase in optimizing the performance of pseudocapacitive materials and provides valuable insights for the development of next-generation energy storage devices.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 7\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401854\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401854","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

赝电容材料的晶相对电荷存储动力学和电容有显著影响;然而,人们对其潜在机制仍知之甚少。本研究的重点是氧化钨(WO3),一种具有多晶相和储能潜力的材料。尽管对WO3进行了广泛的研究,但不同晶体结构对电荷存储性能的影响在很大程度上仍未被探索。本文报道了四方WO3的成功合成及其电化学表征。这项研究表明,与其他WO3多晶相比,四方WO3具有优越的储能能力。根据原位拉曼光谱和紫外光电子能谱结合深入的电化学分析,这种增强归因于独特的电荷存储机制和工程电极功函数促进的扩展电位窗口。该研究强调了晶体相在优化赝电容材料性能中的关键作用,并为下一代储能器件的开发提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tetragonal Tungsten Oxide for Supercapacitor Electrodes: Study of Phase-Driven Charge Storage Mechanism and Work Function Control

Tetragonal Tungsten Oxide for Supercapacitor Electrodes: Study of Phase-Driven Charge Storage Mechanism and Work Function Control

The crystal phase of pseudocapacitive materials significantly influences charge storage kinetics and capacitance; yet, the underlying mechanisms remain poorly understood. This study focuses on tungsten oxide (WO3), a material exhibiting multiple crystal phases with potential for energy storage. Despite extensive research on WO3, the impact of different crystal structures on charge storage properties remains largely unexplored. Here, the successful synthesis and electrochemical characterization of tetragonal WO3 are reported. This investigation demonstrates that tetragonal WO3 exhibits superior energy storage capabilities compared to other WO3 polymorphs. According to in situ Raman spectroscopy and ultraviolet photoelectron spectroscopy combined with in-depth electrochemical analyses, this enhancement is attributed to a unique charge storage mechanism and an expanded potential window facilitated by an engineered electrode work function. This study highlights the critical role of the crystal phase in optimizing the performance of pseudocapacitive materials and provides valuable insights for the development of next-generation energy storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信