Shi-Yi Zhang, Jian Lv, Ze-Rui Zhou, Peter X. Geng, Da-Wei Li, Ruo-Can Qian, Huangxian Ju
{"title":"用于端粒酶RNA定位和活性精确分析的模块化工程DNA纳米器件。","authors":"Shi-Yi Zhang, Jian Lv, Ze-Rui Zhou, Peter X. Geng, Da-Wei Li, Ruo-Can Qian, Huangxian Ju","doi":"10.1002/advs.202409344","DOIUrl":null,"url":null,"abstract":"<p>Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels. To reveal the precise distribution of subcellular hTR and telomerase activity, here a modular engineered DNA nanodevice (DNA-ND) is designed capable of imaging hTR and telomerase activity in cytoplasm and nucleus, enabling colocalization analysis. DNA-ND is a modular DNA complex comprising hTR and telomerase activity detection modules, which respectively sense intercellular hTR and telomerase activity via target-sensitive allosteric transition of DNA switches, actuating orthogonal activation of fluorescence signals to achieve in situ co-imaging of hTR and telomerase activity. By integrating DNA-ND with specific localized signals, the DNA-ND based precise profiling of colocalization of hTR and telomerase activity in different cell lines as well as their dynamic changes during pharmacological interventions is demonstrated. Notably, the results suggest that the locations of hTR and telomerase activity are not exactly overlapped, indicating the influence of intracellular environment on the binding of hTR to telomerase.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 7","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202409344","citationCount":"0","resultStr":"{\"title\":\"A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity\",\"authors\":\"Shi-Yi Zhang, Jian Lv, Ze-Rui Zhou, Peter X. Geng, Da-Wei Li, Ruo-Can Qian, Huangxian Ju\",\"doi\":\"10.1002/advs.202409344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels. To reveal the precise distribution of subcellular hTR and telomerase activity, here a modular engineered DNA nanodevice (DNA-ND) is designed capable of imaging hTR and telomerase activity in cytoplasm and nucleus, enabling colocalization analysis. DNA-ND is a modular DNA complex comprising hTR and telomerase activity detection modules, which respectively sense intercellular hTR and telomerase activity via target-sensitive allosteric transition of DNA switches, actuating orthogonal activation of fluorescence signals to achieve in situ co-imaging of hTR and telomerase activity. By integrating DNA-ND with specific localized signals, the DNA-ND based precise profiling of colocalization of hTR and telomerase activity in different cell lines as well as their dynamic changes during pharmacological interventions is demonstrated. Notably, the results suggest that the locations of hTR and telomerase activity are not exactly overlapped, indicating the influence of intracellular environment on the binding of hTR to telomerase.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 7\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202409344\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202409344\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202409344","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity
Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels. To reveal the precise distribution of subcellular hTR and telomerase activity, here a modular engineered DNA nanodevice (DNA-ND) is designed capable of imaging hTR and telomerase activity in cytoplasm and nucleus, enabling colocalization analysis. DNA-ND is a modular DNA complex comprising hTR and telomerase activity detection modules, which respectively sense intercellular hTR and telomerase activity via target-sensitive allosteric transition of DNA switches, actuating orthogonal activation of fluorescence signals to achieve in situ co-imaging of hTR and telomerase activity. By integrating DNA-ND with specific localized signals, the DNA-ND based precise profiling of colocalization of hTR and telomerase activity in different cell lines as well as their dynamic changes during pharmacological interventions is demonstrated. Notably, the results suggest that the locations of hTR and telomerase activity are not exactly overlapped, indicating the influence of intracellular environment on the binding of hTR to telomerase.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.