具有可调谐电磁特性的基里伽米元结构的高伸缩雷达吸收体

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Weimin Ding  (, ), Zhong Zhang  (, ), Shengyu Duan  (, ), Zeang Zhao  (, ), Hongshuai Lei  (, )
{"title":"具有可调谐电磁特性的基里伽米元结构的高伸缩雷达吸收体","authors":"Weimin Ding \n (,&nbsp;),&nbsp;Zhong Zhang \n (,&nbsp;),&nbsp;Shengyu Duan \n (,&nbsp;),&nbsp;Zeang Zhao \n (,&nbsp;),&nbsp;Hongshuai Lei \n (,&nbsp;)","doi":"10.1007/s10409-024-24363-x","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for lightweight and multifunctional surface structure in high-end equipment is steadily growing. The harmonization between flexibility and electromagnetic tunability has become a significant subject for stealth morphing aircraft. This paper presents a microwave absorbing structure based on the kirigami configuration, aiming at improving the conformality with the negative Poisson’s ratio characteristic and expanding the radar stealth range with tunability. A precise electromagnetic reflectivity model of the impedance surface was established by the inversion method, and an integrated optimization algorithm was employed to optimize the structural parameters based on numerical analysis. Specimens composed of thermoplastic polyurethane elastic colloids and resistive materials were prepared to assess the in-plane mechanical tensile and electromagnetic absorption performances through experimental methods. The results indicate that the original absorption band spans 6.2–11.1 GHz, shifts to 8–18 GHz with stretching at a panel rotation angle of 16°, and remains nearly constant for further stretching. The specimens adhere to complex curved surfaces well in experiments and maintain the electromagnetic absorption performance compared with flat surfaces. This research offers a valuable reference for designing electromagnetic stealth structures that are highly stretchable and adjustable.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 9","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly stretchable radar absorber based on kirigami metastructures with tunable electromagnetic properties\",\"authors\":\"Weimin Ding \\n (,&nbsp;),&nbsp;Zhong Zhang \\n (,&nbsp;),&nbsp;Shengyu Duan \\n (,&nbsp;),&nbsp;Zeang Zhao \\n (,&nbsp;),&nbsp;Hongshuai Lei \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-024-24363-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The demand for lightweight and multifunctional surface structure in high-end equipment is steadily growing. The harmonization between flexibility and electromagnetic tunability has become a significant subject for stealth morphing aircraft. This paper presents a microwave absorbing structure based on the kirigami configuration, aiming at improving the conformality with the negative Poisson’s ratio characteristic and expanding the radar stealth range with tunability. A precise electromagnetic reflectivity model of the impedance surface was established by the inversion method, and an integrated optimization algorithm was employed to optimize the structural parameters based on numerical analysis. Specimens composed of thermoplastic polyurethane elastic colloids and resistive materials were prepared to assess the in-plane mechanical tensile and electromagnetic absorption performances through experimental methods. The results indicate that the original absorption band spans 6.2–11.1 GHz, shifts to 8–18 GHz with stretching at a panel rotation angle of 16°, and remains nearly constant for further stretching. The specimens adhere to complex curved surfaces well in experiments and maintain the electromagnetic absorption performance compared with flat surfaces. This research offers a valuable reference for designing electromagnetic stealth structures that are highly stretchable and adjustable.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 9\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24363-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24363-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

高端装备对轻量化、多功能表面结构的需求正在稳步增长。柔性与电磁可调性的协调已成为隐身变形飞机研究的重要课题。本文提出了一种基于基里伽米结构的微波吸收结构,旨在提高其与负泊松比特性的一致性,扩大雷达的可调性隐身范围。采用反演方法建立了精确的阻抗面电磁反射率模型,并在数值分析的基础上采用集成优化算法对结构参数进行优化。制备由热塑性聚氨酯弹性胶体和电阻材料组成的试样,通过实验方法评估其面内力学拉伸和电磁吸收性能。结果表明:原吸收波段跨越6.2 ~ 11.1 GHz,当面板旋转角度为16°时,拉伸后的吸收波段移至8 ~ 18 GHz,拉伸后吸收波段基本保持不变。实验结果表明,与平面相比,试样在复杂曲面上粘附良好,保持了电磁吸收性能。该研究为设计高伸缩可调的电磁隐身结构提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly stretchable radar absorber based on kirigami metastructures with tunable electromagnetic properties

The demand for lightweight and multifunctional surface structure in high-end equipment is steadily growing. The harmonization between flexibility and electromagnetic tunability has become a significant subject for stealth morphing aircraft. This paper presents a microwave absorbing structure based on the kirigami configuration, aiming at improving the conformality with the negative Poisson’s ratio characteristic and expanding the radar stealth range with tunability. A precise electromagnetic reflectivity model of the impedance surface was established by the inversion method, and an integrated optimization algorithm was employed to optimize the structural parameters based on numerical analysis. Specimens composed of thermoplastic polyurethane elastic colloids and resistive materials were prepared to assess the in-plane mechanical tensile and electromagnetic absorption performances through experimental methods. The results indicate that the original absorption band spans 6.2–11.1 GHz, shifts to 8–18 GHz with stretching at a panel rotation angle of 16°, and remains nearly constant for further stretching. The specimens adhere to complex curved surfaces well in experiments and maintain the electromagnetic absorption performance compared with flat surfaces. This research offers a valuable reference for designing electromagnetic stealth structures that are highly stretchable and adjustable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信