Cheng Li, Zijie Zhao, Miao Li, Qianqian Ye, Zugang Li, Yong Wang, Wanxi Peng, Jianhui Guo, Xiangmeng Chen, Hanyin Li
{"title":"木业用超强耐水氯氧镁水泥基胶粘剂","authors":"Cheng Li, Zijie Zhao, Miao Li, Qianqian Ye, Zugang Li, Yong Wang, Wanxi Peng, Jianhui Guo, Xiangmeng Chen, Hanyin Li","doi":"10.1007/s42114-024-01143-7","DOIUrl":null,"url":null,"abstract":"<div><p>Environmentally friendly, aldehyde-free adhesive designs are in high demand in the wood industry, helping to reduce environmental impact and human health concerns. Magnesium oxychloride cement (MOC) is a low-carbon inorganic gel material that can improve the utilization rate of potassium fertilizer and is a potential substitute for aldehyde-based adhesives. However, in practical applications, it is often limited by its poor water resistance and compatibility with wood, resulting in poor bonding performance. In this paper, an organic–inorganic hybrid method is proposed. Sodium hexametaphosphate/soluble polysaccharide (SHP/SP) was introduced to develop a MOC inorganic adhesive with high adhesion, mechanical strength, and water resistance. The abundant functional groups in SHP/SP formed multiple interactions with Mg<sup>2+</sup>, thus creating an internal network with excellent cohesion strength. The addition of SHP/SP enabled stable infiltration of MOC into the wood through electrostatic adsorption and metal chelation. The results showed that the softening coefficient, compressive strength, and wet shear strength of MOC/SHP/SP adhesive were 0.98, 121.14 MPa, and 2.28 MPa, respectively, representing 81.48%, 128%, and 147.83% increase compared to unmodified MOC. Thus, this study provides a promising approach for developing high-performance and environmentally friendly MOC adhesives and composites using agricultural and industrial by-products.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing ultra-strong and water resistance magnesium oxychloride cement-based adhesive for wood industry\",\"authors\":\"Cheng Li, Zijie Zhao, Miao Li, Qianqian Ye, Zugang Li, Yong Wang, Wanxi Peng, Jianhui Guo, Xiangmeng Chen, Hanyin Li\",\"doi\":\"10.1007/s42114-024-01143-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Environmentally friendly, aldehyde-free adhesive designs are in high demand in the wood industry, helping to reduce environmental impact and human health concerns. Magnesium oxychloride cement (MOC) is a low-carbon inorganic gel material that can improve the utilization rate of potassium fertilizer and is a potential substitute for aldehyde-based adhesives. However, in practical applications, it is often limited by its poor water resistance and compatibility with wood, resulting in poor bonding performance. In this paper, an organic–inorganic hybrid method is proposed. Sodium hexametaphosphate/soluble polysaccharide (SHP/SP) was introduced to develop a MOC inorganic adhesive with high adhesion, mechanical strength, and water resistance. The abundant functional groups in SHP/SP formed multiple interactions with Mg<sup>2+</sup>, thus creating an internal network with excellent cohesion strength. The addition of SHP/SP enabled stable infiltration of MOC into the wood through electrostatic adsorption and metal chelation. The results showed that the softening coefficient, compressive strength, and wet shear strength of MOC/SHP/SP adhesive were 0.98, 121.14 MPa, and 2.28 MPa, respectively, representing 81.48%, 128%, and 147.83% increase compared to unmodified MOC. Thus, this study provides a promising approach for developing high-performance and environmentally friendly MOC adhesives and composites using agricultural and industrial by-products.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01143-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01143-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Constructing ultra-strong and water resistance magnesium oxychloride cement-based adhesive for wood industry
Environmentally friendly, aldehyde-free adhesive designs are in high demand in the wood industry, helping to reduce environmental impact and human health concerns. Magnesium oxychloride cement (MOC) is a low-carbon inorganic gel material that can improve the utilization rate of potassium fertilizer and is a potential substitute for aldehyde-based adhesives. However, in practical applications, it is often limited by its poor water resistance and compatibility with wood, resulting in poor bonding performance. In this paper, an organic–inorganic hybrid method is proposed. Sodium hexametaphosphate/soluble polysaccharide (SHP/SP) was introduced to develop a MOC inorganic adhesive with high adhesion, mechanical strength, and water resistance. The abundant functional groups in SHP/SP formed multiple interactions with Mg2+, thus creating an internal network with excellent cohesion strength. The addition of SHP/SP enabled stable infiltration of MOC into the wood through electrostatic adsorption and metal chelation. The results showed that the softening coefficient, compressive strength, and wet shear strength of MOC/SHP/SP adhesive were 0.98, 121.14 MPa, and 2.28 MPa, respectively, representing 81.48%, 128%, and 147.83% increase compared to unmodified MOC. Thus, this study provides a promising approach for developing high-performance and environmentally friendly MOC adhesives and composites using agricultural and industrial by-products.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.