盲图像超分辨率的多模态先验引导扩散模型

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Detian Huang;Jiaxun Song;Xiaoqian Huang;Zhenzhen Hu;Huanqiang Zeng
{"title":"盲图像超分辨率的多模态先验引导扩散模型","authors":"Detian Huang;Jiaxun Song;Xiaoqian Huang;Zhenzhen Hu;Huanqiang Zeng","doi":"10.1109/LSP.2024.3516699","DOIUrl":null,"url":null,"abstract":"Recently, diffusion models have achieved remarkable success in blind image super-resolution. However, most existing methods rely solely on uni-modal degraded low-resolution images to guide diffusion models for restoring high-fidelity images, resulting in inferior realism. In this letter, we propose a Multi-modal Prior-Guided diffusion model for blind image Super-Resolution (MPGSR), which fine-tunes Stable Diffusion (SD) by utilizing the superior visual-and-textual guidance for restoring realistic high-resolution images. Specifically, our MPGSR involves two stages, i.e., multi-modal guidance extraction and adaptive guidance injection. For the former, we propose a composited transformer and further incorporate it with GPT-CLIP to extract the representative visual-and-textual guidance. For the latter, we design a feature calibration ControlNet to inject the visual guidance and employ the cross-attention layer provided by the frozen SD to inject the textual guidance, thus effectively activating the powerful text-to-image generation potential. Extensive experiments show that our MPGSR outperforms state-of-the-art methods in restoration quality and convergence time.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"316-320"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Modal Prior-Guided Diffusion Model for Blind Image Super-Resolution\",\"authors\":\"Detian Huang;Jiaxun Song;Xiaoqian Huang;Zhenzhen Hu;Huanqiang Zeng\",\"doi\":\"10.1109/LSP.2024.3516699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, diffusion models have achieved remarkable success in blind image super-resolution. However, most existing methods rely solely on uni-modal degraded low-resolution images to guide diffusion models for restoring high-fidelity images, resulting in inferior realism. In this letter, we propose a Multi-modal Prior-Guided diffusion model for blind image Super-Resolution (MPGSR), which fine-tunes Stable Diffusion (SD) by utilizing the superior visual-and-textual guidance for restoring realistic high-resolution images. Specifically, our MPGSR involves two stages, i.e., multi-modal guidance extraction and adaptive guidance injection. For the former, we propose a composited transformer and further incorporate it with GPT-CLIP to extract the representative visual-and-textual guidance. For the latter, we design a feature calibration ControlNet to inject the visual guidance and employ the cross-attention layer provided by the frozen SD to inject the textual guidance, thus effectively activating the powerful text-to-image generation potential. Extensive experiments show that our MPGSR outperforms state-of-the-art methods in restoration quality and convergence time.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"316-320\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10797682/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10797682/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,扩散模型在盲图像超分辨方面取得了显著的成功。然而,现有的方法大多仅依靠单模态退化的低分辨率图像来指导扩散模型来恢复高保真图像,导致真实感较差。在这篇文章中,我们提出了一种用于盲图像超分辨率(MPGSR)的多模态先验引导扩散模型,该模型通过利用优越的视觉和文本指导来微调稳定扩散(SD),以恢复逼真的高分辨率图像。具体来说,我们的MPGSR包括两个阶段,即多模态制导提取和自适应制导注入。对于前者,我们提出了一个复合变压器,并进一步将其与GPT-CLIP结合,以提取具有代表性的视觉和文本指导。对于后者,我们设计了一个特征校准ControlNet注入视觉引导,并利用静止SD提供的交叉注意层注入文本引导,从而有效地激活了强大的文本到图像生成潜力。大量的实验表明,我们的MPGSR在恢复质量和收敛时间方面优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Modal Prior-Guided Diffusion Model for Blind Image Super-Resolution
Recently, diffusion models have achieved remarkable success in blind image super-resolution. However, most existing methods rely solely on uni-modal degraded low-resolution images to guide diffusion models for restoring high-fidelity images, resulting in inferior realism. In this letter, we propose a Multi-modal Prior-Guided diffusion model for blind image Super-Resolution (MPGSR), which fine-tunes Stable Diffusion (SD) by utilizing the superior visual-and-textual guidance for restoring realistic high-resolution images. Specifically, our MPGSR involves two stages, i.e., multi-modal guidance extraction and adaptive guidance injection. For the former, we propose a composited transformer and further incorporate it with GPT-CLIP to extract the representative visual-and-textual guidance. For the latter, we design a feature calibration ControlNet to inject the visual guidance and employ the cross-attention layer provided by the frozen SD to inject the textual guidance, thus effectively activating the powerful text-to-image generation potential. Extensive experiments show that our MPGSR outperforms state-of-the-art methods in restoration quality and convergence time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信