MLLM-TA:利用多模态大语言模型进行精确的时间视频接地

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yi Liu;Haowen Hou;Fei Ma;Shiguang Ni;Fei Richard Yu
{"title":"MLLM-TA:利用多模态大语言模型进行精确的时间视频接地","authors":"Yi Liu;Haowen Hou;Fei Ma;Shiguang Ni;Fei Richard Yu","doi":"10.1109/LSP.2024.3511426","DOIUrl":null,"url":null,"abstract":"In untrimmed video tasks, identifying temporal boundaries in videos is crucial for temporal video grounding. With the emergence of multimodal large language models (MLLMs), recent studies have focused on endowing these models with the capability of temporal perception in untrimmed videos. To address the challenge, in this paper, we introduce a multimodal large language model named MLLM-TA with precise temporal perception to obtain temporal attention. Unlike the traditional MLLMs, answering temporal questions through one or two words related to temporal information, we leverage the text description proficiency of MLLMs to acquire video temporal attention with description. Specifically, we design a dual temporal-aware generative branches aimed at the visual space of the entire video and the textual space of global descriptions, simultaneously generating mutually supervised consistent temporal attention, thereby enhancing the video temporal perception capabilities of MLLMs. Finally, we evaluate our approach on both video grounding task and highlight detection task on three popular benchmarks, including Charades-STA, ActivityNet Captions and QVHighlights. The extensive results show that our MLLM-TA significantly outperforms previous approaches both on zero-shot and supervised setting, achieving state-of-the-art performance.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"281-285"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MLLM-TA: Leveraging Multimodal Large Language Models for Precise Temporal Video Grounding\",\"authors\":\"Yi Liu;Haowen Hou;Fei Ma;Shiguang Ni;Fei Richard Yu\",\"doi\":\"10.1109/LSP.2024.3511426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In untrimmed video tasks, identifying temporal boundaries in videos is crucial for temporal video grounding. With the emergence of multimodal large language models (MLLMs), recent studies have focused on endowing these models with the capability of temporal perception in untrimmed videos. To address the challenge, in this paper, we introduce a multimodal large language model named MLLM-TA with precise temporal perception to obtain temporal attention. Unlike the traditional MLLMs, answering temporal questions through one or two words related to temporal information, we leverage the text description proficiency of MLLMs to acquire video temporal attention with description. Specifically, we design a dual temporal-aware generative branches aimed at the visual space of the entire video and the textual space of global descriptions, simultaneously generating mutually supervised consistent temporal attention, thereby enhancing the video temporal perception capabilities of MLLMs. Finally, we evaluate our approach on both video grounding task and highlight detection task on three popular benchmarks, including Charades-STA, ActivityNet Captions and QVHighlights. The extensive results show that our MLLM-TA significantly outperforms previous approaches both on zero-shot and supervised setting, achieving state-of-the-art performance.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"281-285\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10777595/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10777595/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在未修剪的视频任务中,识别视频的时间边界是视频时间接地的关键。随着多模态大语言模型(mllm)的出现,近年来的研究主要集中在赋予这些模型在未修剪视频中的时间感知能力。为了解决这一挑战,本文引入了一种具有精确时间感知的多模态大语言模型MLLM-TA来获得时间注意力。与传统mllm通过与时间信息相关的一两个词来回答时间问题不同,我们利用mllm的文本描述熟练度,通过描述来获取视频的时间注意力。具体而言,我们针对整个视频的视觉空间和全局描述的文本空间设计了双时间感知的生成分支,同时生成相互监督的一致时间关注,从而增强了mllm的视频时间感知能力。最后,我们在三个流行的基准测试上评估了我们在视频接地任务和突出显示检测任务上的方法,包括Charades-STA, ActivityNet Captions和QVHighlights。广泛的结果表明,我们的MLLM-TA在零射击和监督设置上都明显优于以前的方法,达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MLLM-TA: Leveraging Multimodal Large Language Models for Precise Temporal Video Grounding
In untrimmed video tasks, identifying temporal boundaries in videos is crucial for temporal video grounding. With the emergence of multimodal large language models (MLLMs), recent studies have focused on endowing these models with the capability of temporal perception in untrimmed videos. To address the challenge, in this paper, we introduce a multimodal large language model named MLLM-TA with precise temporal perception to obtain temporal attention. Unlike the traditional MLLMs, answering temporal questions through one or two words related to temporal information, we leverage the text description proficiency of MLLMs to acquire video temporal attention with description. Specifically, we design a dual temporal-aware generative branches aimed at the visual space of the entire video and the textual space of global descriptions, simultaneously generating mutually supervised consistent temporal attention, thereby enhancing the video temporal perception capabilities of MLLMs. Finally, we evaluate our approach on both video grounding task and highlight detection task on three popular benchmarks, including Charades-STA, ActivityNet Captions and QVHighlights. The extensive results show that our MLLM-TA significantly outperforms previous approaches both on zero-shot and supervised setting, achieving state-of-the-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信