Rhianna M. Oakley;Andrew T. Polonsky;Paul Chao;Claus Danielson
{"title":"用于自动串行切片的鲁棒数据驱动预测运行到运行控制","authors":"Rhianna M. Oakley;Andrew T. Polonsky;Paul Chao;Claus Danielson","doi":"10.1109/LCSYS.2024.3514977","DOIUrl":null,"url":null,"abstract":"This letter presents a one-step predictive run-to-run controller (R2R-MPC) for the automation of mechanical serial sectioning (MSS), a destructive material analysis process. To address the inherent uncertainty and disturbances in the MSS process, a robust closed-loop approach is presented. The robust R2R-MPC models the uncertainty of the MSS process using a linear differential inclusion. As an analytical model of the MSS process is unavailable, the differential inclusion is identified from historical data. The R2R-MPC is posed as an optimization problem that computes incremental changes to the control input which minimize the worst-case material removal errors. This optimization-based controller is combined with a run-to-run controller to provide integral action that rejects constant disturbances and tracks constant reference removal rates. To demonstrate the efficacy of our robust R2R-MPC, we present simulation results which compare the presented controller with a conventional non-robust R2R.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2871-2876"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Data-Driven Predictive Run-to-Run Control for Automated Serial Sectioning\",\"authors\":\"Rhianna M. Oakley;Andrew T. Polonsky;Paul Chao;Claus Danielson\",\"doi\":\"10.1109/LCSYS.2024.3514977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a one-step predictive run-to-run controller (R2R-MPC) for the automation of mechanical serial sectioning (MSS), a destructive material analysis process. To address the inherent uncertainty and disturbances in the MSS process, a robust closed-loop approach is presented. The robust R2R-MPC models the uncertainty of the MSS process using a linear differential inclusion. As an analytical model of the MSS process is unavailable, the differential inclusion is identified from historical data. The R2R-MPC is posed as an optimization problem that computes incremental changes to the control input which minimize the worst-case material removal errors. This optimization-based controller is combined with a run-to-run controller to provide integral action that rejects constant disturbances and tracks constant reference removal rates. To demonstrate the efficacy of our robust R2R-MPC, we present simulation results which compare the presented controller with a conventional non-robust R2R.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2871-2876\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10787220/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10787220/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robust Data-Driven Predictive Run-to-Run Control for Automated Serial Sectioning
This letter presents a one-step predictive run-to-run controller (R2R-MPC) for the automation of mechanical serial sectioning (MSS), a destructive material analysis process. To address the inherent uncertainty and disturbances in the MSS process, a robust closed-loop approach is presented. The robust R2R-MPC models the uncertainty of the MSS process using a linear differential inclusion. As an analytical model of the MSS process is unavailable, the differential inclusion is identified from historical data. The R2R-MPC is posed as an optimization problem that computes incremental changes to the control input which minimize the worst-case material removal errors. This optimization-based controller is combined with a run-to-run controller to provide integral action that rejects constant disturbances and tracks constant reference removal rates. To demonstrate the efficacy of our robust R2R-MPC, we present simulation results which compare the presented controller with a conventional non-robust R2R.