面向密集预测的傅立叶频域知识精馏

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Min Shi;Chengkun Zheng;Qingming Yi;Jian Weng;Aiwen Luo
{"title":"面向密集预测的傅立叶频域知识精馏","authors":"Min Shi;Chengkun Zheng;Qingming Yi;Jian Weng;Aiwen Luo","doi":"10.1109/LSP.2024.3515795","DOIUrl":null,"url":null,"abstract":"Knowledge distillation has been widely used to enhance student network performance for dense prediction tasks. Most previous knowledge distillation methods focus on valuable regions of the feature map in the spatial domain, ignoring the semantic information in the frequency domain. This work explores effective information representation of feature maps in the frequency domain and proposes a novel distillation method in the Fourier domain. This approach enhances the student's amplitude representation and transmits both original feature knowledge and global pixel relations. Experiments on object detection and semantic segmentation tasks, including both homogeneous distillation and heterogeneous distillation, demonstrate the significant improvement for the student network. For instance, the ResNet50-RepPoints detector and ResNet18-PspNet segmenter achieve 4.2% AP and 5.01% mIoU improvements on COCO2017 and CityScapes datasets, respectively.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"296-300"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge Distillation in Fourier Frequency Domain for Dense Prediction\",\"authors\":\"Min Shi;Chengkun Zheng;Qingming Yi;Jian Weng;Aiwen Luo\",\"doi\":\"10.1109/LSP.2024.3515795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge distillation has been widely used to enhance student network performance for dense prediction tasks. Most previous knowledge distillation methods focus on valuable regions of the feature map in the spatial domain, ignoring the semantic information in the frequency domain. This work explores effective information representation of feature maps in the frequency domain and proposes a novel distillation method in the Fourier domain. This approach enhances the student's amplitude representation and transmits both original feature knowledge and global pixel relations. Experiments on object detection and semantic segmentation tasks, including both homogeneous distillation and heterogeneous distillation, demonstrate the significant improvement for the student network. For instance, the ResNet50-RepPoints detector and ResNet18-PspNet segmenter achieve 4.2% AP and 5.01% mIoU improvements on COCO2017 and CityScapes datasets, respectively.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"296-300\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10792928/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10792928/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

知识蒸馏被广泛用于提高学生网络在密集预测任务中的性能。以往的知识蒸馏方法大多集中在空间域特征映射的有价值区域,而忽略了频域的语义信息。本研究探索了特征映射在频域的有效信息表示,并提出了一种新的傅立叶域的提取方法。该方法增强了学生的幅度表示,既传递了原始特征知识,又传递了全局像素关系。在目标检测和语义分割任务上的实验,包括同质蒸馏和异质蒸馏,都证明了学生网络的显著改进。例如,ResNet50-RepPoints检测器和ResNet18-PspNet分割器在COCO2017和cityscape数据集上分别实现了4.2%的AP和5.01%的mIoU改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge Distillation in Fourier Frequency Domain for Dense Prediction
Knowledge distillation has been widely used to enhance student network performance for dense prediction tasks. Most previous knowledge distillation methods focus on valuable regions of the feature map in the spatial domain, ignoring the semantic information in the frequency domain. This work explores effective information representation of feature maps in the frequency domain and proposes a novel distillation method in the Fourier domain. This approach enhances the student's amplitude representation and transmits both original feature knowledge and global pixel relations. Experiments on object detection and semantic segmentation tasks, including both homogeneous distillation and heterogeneous distillation, demonstrate the significant improvement for the student network. For instance, the ResNet50-RepPoints detector and ResNet18-PspNet segmenter achieve 4.2% AP and 5.01% mIoU improvements on COCO2017 and CityScapes datasets, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信