2位延迟可解码码类的最优码

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Kengo Hashimoto;Ken-Ichi Iwata
{"title":"2位延迟可解码码类的最优码","authors":"Kengo Hashimoto;Ken-Ichi Iwata","doi":"10.1109/TIT.2024.3503717","DOIUrl":null,"url":null,"abstract":"For an integer \n<inline-formula> <tex-math>$k \\geq 0$ </tex-math></inline-formula>\n, k-bit delay decodable code-tuples are source codes that use a finite number of code tables and allow a decoding delay of at most k bits. It is known that the class of k-bit delay decodable code-tuples can achieve a better average codeword length than Huffman codes for \n<inline-formula> <tex-math>$k \\geq 2$ </tex-math></inline-formula>\n. However, it is generally challenging to find an optimal k-bit delay decodable code-tuple (i.e., a k-bit delay decodable code-tuple achieving the optimal average codeword length among all k-bit delay decodable code-tuples) because the class of k-bit delay decodable code-tuples is a comprehensive and flexible class containing a variety of source code consisting of any finite number of code tables. AIFV (almost instantaneous fixed-to-variable length) codes are 2-bit delay decodable code-tuples consisting of two code tables satisfying certain constraints. This paper proves that the class of AIFV codes always contains an optimal 2-bit delay decodable code-tuple for any given source distribution. Thus, we can find an optimal 2-bit delay decodable code-tuple in the class of 2-bit delay decodable code-tuples by considering only the class of AIFV codes, which is a very restricted subclass compared to the whole class of 2-bit delay decodable code-tuples.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 1","pages":"797-832"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Codes in the Class of 2-Bit Delay Decodable Codes\",\"authors\":\"Kengo Hashimoto;Ken-Ichi Iwata\",\"doi\":\"10.1109/TIT.2024.3503717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an integer \\n<inline-formula> <tex-math>$k \\\\geq 0$ </tex-math></inline-formula>\\n, k-bit delay decodable code-tuples are source codes that use a finite number of code tables and allow a decoding delay of at most k bits. It is known that the class of k-bit delay decodable code-tuples can achieve a better average codeword length than Huffman codes for \\n<inline-formula> <tex-math>$k \\\\geq 2$ </tex-math></inline-formula>\\n. However, it is generally challenging to find an optimal k-bit delay decodable code-tuple (i.e., a k-bit delay decodable code-tuple achieving the optimal average codeword length among all k-bit delay decodable code-tuples) because the class of k-bit delay decodable code-tuples is a comprehensive and flexible class containing a variety of source code consisting of any finite number of code tables. AIFV (almost instantaneous fixed-to-variable length) codes are 2-bit delay decodable code-tuples consisting of two code tables satisfying certain constraints. This paper proves that the class of AIFV codes always contains an optimal 2-bit delay decodable code-tuple for any given source distribution. Thus, we can find an optimal 2-bit delay decodable code-tuple in the class of 2-bit delay decodable code-tuples by considering only the class of AIFV codes, which is a very restricted subclass compared to the whole class of 2-bit delay decodable code-tuples.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 1\",\"pages\":\"797-832\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10759810/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759810/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对于整数$k \geq 0$, k位延迟可解码的代码元组是使用有限数量的代码表并允许最多k位解码延迟的源代码。众所周知,k位延迟可解码码元组的类可以实现比$k \geq 2$的霍夫曼码更好的平均码字长度。然而,要找到一个最佳的k位延迟可解码代码元组(即,在所有k位延迟可解码代码元组中实现最佳平均码字长度的k位延迟可解码代码元组)通常是具有挑战性的,因为k位延迟可解码代码元组是一个全面而灵活的类,包含由任意有限数量的代码表组成的各种源代码。AIFV(几乎瞬时固定到可变长度)代码是由满足一定约束的两个代码表组成的2位延迟可解码代码元组。证明了AIFV码类对于任意给定的源分布总是包含一个最优的2位延迟可解码码元组。因此,我们可以只考虑AIFV码类,在2位延迟可解码码元组类中找到一个最优的2位延迟可解码码元组,与整个2位延迟可解码码元组类相比,AIFV码类是一个非常有限的子类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Codes in the Class of 2-Bit Delay Decodable Codes
For an integer $k \geq 0$ , k-bit delay decodable code-tuples are source codes that use a finite number of code tables and allow a decoding delay of at most k bits. It is known that the class of k-bit delay decodable code-tuples can achieve a better average codeword length than Huffman codes for $k \geq 2$ . However, it is generally challenging to find an optimal k-bit delay decodable code-tuple (i.e., a k-bit delay decodable code-tuple achieving the optimal average codeword length among all k-bit delay decodable code-tuples) because the class of k-bit delay decodable code-tuples is a comprehensive and flexible class containing a variety of source code consisting of any finite number of code tables. AIFV (almost instantaneous fixed-to-variable length) codes are 2-bit delay decodable code-tuples consisting of two code tables satisfying certain constraints. This paper proves that the class of AIFV codes always contains an optimal 2-bit delay decodable code-tuple for any given source distribution. Thus, we can find an optimal 2-bit delay decodable code-tuple in the class of 2-bit delay decodable code-tuples by considering only the class of AIFV codes, which is a very restricted subclass compared to the whole class of 2-bit delay decodable code-tuples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信