{"title":"2位延迟可解码码类的最优码","authors":"Kengo Hashimoto;Ken-Ichi Iwata","doi":"10.1109/TIT.2024.3503717","DOIUrl":null,"url":null,"abstract":"For an integer \n<inline-formula> <tex-math>$k \\geq 0$ </tex-math></inline-formula>\n, k-bit delay decodable code-tuples are source codes that use a finite number of code tables and allow a decoding delay of at most k bits. It is known that the class of k-bit delay decodable code-tuples can achieve a better average codeword length than Huffman codes for \n<inline-formula> <tex-math>$k \\geq 2$ </tex-math></inline-formula>\n. However, it is generally challenging to find an optimal k-bit delay decodable code-tuple (i.e., a k-bit delay decodable code-tuple achieving the optimal average codeword length among all k-bit delay decodable code-tuples) because the class of k-bit delay decodable code-tuples is a comprehensive and flexible class containing a variety of source code consisting of any finite number of code tables. AIFV (almost instantaneous fixed-to-variable length) codes are 2-bit delay decodable code-tuples consisting of two code tables satisfying certain constraints. This paper proves that the class of AIFV codes always contains an optimal 2-bit delay decodable code-tuple for any given source distribution. Thus, we can find an optimal 2-bit delay decodable code-tuple in the class of 2-bit delay decodable code-tuples by considering only the class of AIFV codes, which is a very restricted subclass compared to the whole class of 2-bit delay decodable code-tuples.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 1","pages":"797-832"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Codes in the Class of 2-Bit Delay Decodable Codes\",\"authors\":\"Kengo Hashimoto;Ken-Ichi Iwata\",\"doi\":\"10.1109/TIT.2024.3503717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an integer \\n<inline-formula> <tex-math>$k \\\\geq 0$ </tex-math></inline-formula>\\n, k-bit delay decodable code-tuples are source codes that use a finite number of code tables and allow a decoding delay of at most k bits. It is known that the class of k-bit delay decodable code-tuples can achieve a better average codeword length than Huffman codes for \\n<inline-formula> <tex-math>$k \\\\geq 2$ </tex-math></inline-formula>\\n. However, it is generally challenging to find an optimal k-bit delay decodable code-tuple (i.e., a k-bit delay decodable code-tuple achieving the optimal average codeword length among all k-bit delay decodable code-tuples) because the class of k-bit delay decodable code-tuples is a comprehensive and flexible class containing a variety of source code consisting of any finite number of code tables. AIFV (almost instantaneous fixed-to-variable length) codes are 2-bit delay decodable code-tuples consisting of two code tables satisfying certain constraints. This paper proves that the class of AIFV codes always contains an optimal 2-bit delay decodable code-tuple for any given source distribution. Thus, we can find an optimal 2-bit delay decodable code-tuple in the class of 2-bit delay decodable code-tuples by considering only the class of AIFV codes, which is a very restricted subclass compared to the whole class of 2-bit delay decodable code-tuples.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 1\",\"pages\":\"797-832\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10759810/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759810/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Optimal Codes in the Class of 2-Bit Delay Decodable Codes
For an integer
$k \geq 0$
, k-bit delay decodable code-tuples are source codes that use a finite number of code tables and allow a decoding delay of at most k bits. It is known that the class of k-bit delay decodable code-tuples can achieve a better average codeword length than Huffman codes for
$k \geq 2$
. However, it is generally challenging to find an optimal k-bit delay decodable code-tuple (i.e., a k-bit delay decodable code-tuple achieving the optimal average codeword length among all k-bit delay decodable code-tuples) because the class of k-bit delay decodable code-tuples is a comprehensive and flexible class containing a variety of source code consisting of any finite number of code tables. AIFV (almost instantaneous fixed-to-variable length) codes are 2-bit delay decodable code-tuples consisting of two code tables satisfying certain constraints. This paper proves that the class of AIFV codes always contains an optimal 2-bit delay decodable code-tuple for any given source distribution. Thus, we can find an optimal 2-bit delay decodable code-tuple in the class of 2-bit delay decodable code-tuples by considering only the class of AIFV codes, which is a very restricted subclass compared to the whole class of 2-bit delay decodable code-tuples.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.