{"title":"量子局部可测试码的权衡结构","authors":"Adam Wills;Ting-Chun Lin;Min-Hsiu Hsieh","doi":"10.1109/TIT.2024.3503500","DOIUrl":null,"url":null,"abstract":"In this work, we continue the search for quantum locally testable codes (qLTCs) of new parameters by presenting three constructions that can make new qLTCs from old. The first analyses the soundness of a quantum code under Hastings’ weight reduction construction for qLDPC codes to give a weight reduction procedure for qLTCs. Secondly, we describe a novel ‘soundness amplification’ procedure for qLTCs which can increase the soundness of any qLTC to a constant while preserving its distance and dimension, with an impact only felt on its locality. Finally, we apply the AEL distance amplification construction to the case of qLTCs for the first time which can turn a high-distance qLTC into one with linear distance, at the expense of other parameters. These constructions can be used on as-yet undiscovered qLTCs to obtain new parameters, but we also find a number of present applications to prove the existence of codes in previously unknown parameter regimes. In particular, applications of these operations to the hypersphere product code and the hemicubic code yield many previously unknown parameters. In addition, applications of all three results are described to an upcoming work.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 1","pages":"426-458"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759074","citationCount":"0","resultStr":"{\"title\":\"Tradeoff Constructions for Quantum Locally Testable Codes\",\"authors\":\"Adam Wills;Ting-Chun Lin;Min-Hsiu Hsieh\",\"doi\":\"10.1109/TIT.2024.3503500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we continue the search for quantum locally testable codes (qLTCs) of new parameters by presenting three constructions that can make new qLTCs from old. The first analyses the soundness of a quantum code under Hastings’ weight reduction construction for qLDPC codes to give a weight reduction procedure for qLTCs. Secondly, we describe a novel ‘soundness amplification’ procedure for qLTCs which can increase the soundness of any qLTC to a constant while preserving its distance and dimension, with an impact only felt on its locality. Finally, we apply the AEL distance amplification construction to the case of qLTCs for the first time which can turn a high-distance qLTC into one with linear distance, at the expense of other parameters. These constructions can be used on as-yet undiscovered qLTCs to obtain new parameters, but we also find a number of present applications to prove the existence of codes in previously unknown parameter regimes. In particular, applications of these operations to the hypersphere product code and the hemicubic code yield many previously unknown parameters. In addition, applications of all three results are described to an upcoming work.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 1\",\"pages\":\"426-458\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759074\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10759074/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759074/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Tradeoff Constructions for Quantum Locally Testable Codes
In this work, we continue the search for quantum locally testable codes (qLTCs) of new parameters by presenting three constructions that can make new qLTCs from old. The first analyses the soundness of a quantum code under Hastings’ weight reduction construction for qLDPC codes to give a weight reduction procedure for qLTCs. Secondly, we describe a novel ‘soundness amplification’ procedure for qLTCs which can increase the soundness of any qLTC to a constant while preserving its distance and dimension, with an impact only felt on its locality. Finally, we apply the AEL distance amplification construction to the case of qLTCs for the first time which can turn a high-distance qLTC into one with linear distance, at the expense of other parameters. These constructions can be used on as-yet undiscovered qLTCs to obtain new parameters, but we also find a number of present applications to prove the existence of codes in previously unknown parameter regimes. In particular, applications of these operations to the hypersphere product code and the hemicubic code yield many previously unknown parameters. In addition, applications of all three results are described to an upcoming work.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.