{"title":"泊松散粒噪声拉普拉斯变换的矩阵指数推广","authors":"Nicholas R. Olson;Jeffrey G. Andrews","doi":"10.1109/TIT.2024.3502295","DOIUrl":null,"url":null,"abstract":"We consider a generalization of the Laplace transform of Poisson shot noise defined as an integral transform with respect to a matrix exponential. We denote this as the matrix Laplace transform and establish that it is in general a matrix function extension of the scalar Laplace transform. We show that the matrix Laplace transform of Poisson shot noise admits an expression analogous to that implied by Campbell’s theorem. We demonstrate the utility of this generalization of Campbell’s theorem in two important applications: the characterization of a Poisson shot noise process and the derivation of the complementary CDF (CCDF) and meta-distribution of signal-to-interference-and-noise (SINR) models in Poisson networks. In the former application, we demonstrate how the higher order moments of Poisson shot noise may be obtained directly from the elements of its matrix Laplace transform. We further show how the CCDF of this object may be bounded using a summation of the first row of its matrix Laplace transform. For the latter application, we show how the CCDF of SINR models with phase-type distributed desired signal power may be obtained via an expectation of the matrix Laplace transform of the interference and noise, analogous to the canonical case of SINR models with Rayleigh fading. Additionally, when the power of the desired signal is exponentially distributed, we establish that the meta-distribution may be obtained in terms of the limit of a sequence expressed in terms of the matrix Laplace transform of a related Poisson shot noise process.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 1","pages":"396-412"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Matrix Exponential Generalization of the Laplace Transform of Poisson Shot Noise\",\"authors\":\"Nicholas R. Olson;Jeffrey G. Andrews\",\"doi\":\"10.1109/TIT.2024.3502295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a generalization of the Laplace transform of Poisson shot noise defined as an integral transform with respect to a matrix exponential. We denote this as the matrix Laplace transform and establish that it is in general a matrix function extension of the scalar Laplace transform. We show that the matrix Laplace transform of Poisson shot noise admits an expression analogous to that implied by Campbell’s theorem. We demonstrate the utility of this generalization of Campbell’s theorem in two important applications: the characterization of a Poisson shot noise process and the derivation of the complementary CDF (CCDF) and meta-distribution of signal-to-interference-and-noise (SINR) models in Poisson networks. In the former application, we demonstrate how the higher order moments of Poisson shot noise may be obtained directly from the elements of its matrix Laplace transform. We further show how the CCDF of this object may be bounded using a summation of the first row of its matrix Laplace transform. For the latter application, we show how the CCDF of SINR models with phase-type distributed desired signal power may be obtained via an expectation of the matrix Laplace transform of the interference and noise, analogous to the canonical case of SINR models with Rayleigh fading. Additionally, when the power of the desired signal is exponentially distributed, we establish that the meta-distribution may be obtained in terms of the limit of a sequence expressed in terms of the matrix Laplace transform of a related Poisson shot noise process.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 1\",\"pages\":\"396-412\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10758216/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10758216/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Matrix Exponential Generalization of the Laplace Transform of Poisson Shot Noise
We consider a generalization of the Laplace transform of Poisson shot noise defined as an integral transform with respect to a matrix exponential. We denote this as the matrix Laplace transform and establish that it is in general a matrix function extension of the scalar Laplace transform. We show that the matrix Laplace transform of Poisson shot noise admits an expression analogous to that implied by Campbell’s theorem. We demonstrate the utility of this generalization of Campbell’s theorem in two important applications: the characterization of a Poisson shot noise process and the derivation of the complementary CDF (CCDF) and meta-distribution of signal-to-interference-and-noise (SINR) models in Poisson networks. In the former application, we demonstrate how the higher order moments of Poisson shot noise may be obtained directly from the elements of its matrix Laplace transform. We further show how the CCDF of this object may be bounded using a summation of the first row of its matrix Laplace transform. For the latter application, we show how the CCDF of SINR models with phase-type distributed desired signal power may be obtained via an expectation of the matrix Laplace transform of the interference and noise, analogous to the canonical case of SINR models with Rayleigh fading. Additionally, when the power of the desired signal is exponentially distributed, we establish that the meta-distribution may be obtained in terms of the limit of a sequence expressed in terms of the matrix Laplace transform of a related Poisson shot noise process.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.