二进制对称信道的最优四码有限长分组码

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yanyan Dong;Shenghao Yang
{"title":"二进制对称信道的最优四码有限长分组码","authors":"Yanyan Dong;Shenghao Yang","doi":"10.1109/TIT.2024.3504823","DOIUrl":null,"url":null,"abstract":"An \n<inline-formula> <tex-math>$(n,M)$ </tex-math></inline-formula>\n code refers to a binary code with blocklength n and codebook size M. Such codes are studied in the context of memoryless binary symmetric channels (BSCs) with maximum likelihood (ML) decoding. Previous research has characterized some optimal codes among the linear \n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\n codes for any \n<inline-formula> <tex-math>$n \\geq 2$ </tex-math></inline-formula>\n. However, it was unknown whether these optimal codes among linear codes were better than all nonlinear codes. In this paper, we first demonstrate that for any \n<inline-formula> <tex-math>$n \\geq 2$ </tex-math></inline-formula>\n, there exists an optimal code among all \n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\n codes that is either linear or belongs to a subset of nonlinear codes called Class-I codes. We identify all the optimal codes among the linear \n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\n codes for each blocklength \n<inline-formula> <tex-math>$n \\geq 2$ </tex-math></inline-formula>\n and discover some that were not previously reported in the literature. For any n from 2 to 8, all the optimal \n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\n codes are identified. Except for \n<inline-formula> <tex-math>$n=3$ </tex-math></inline-formula>\n, all the optimal \n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\n codes are equivalent to linear codes. There exist optimal \n<inline-formula> <tex-math>$(3,4)$ </tex-math></inline-formula>\n codes that are not equivalent to linear codes. Furthermore, we introduce a subset of nonlinear codes called Class-II codes and show that for any \n<inline-formula> <tex-math>$n \\gt 3$ </tex-math></inline-formula>\n, the set composed of linear, Class-I, and Class-II codes and their equivalent codes contains all the optimal \n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\n codes. Both Class-I and Class-II codes are close to linear codes in the sense that they involve only one type of column that is not included in linear codes. We derive a sufficient condition such that all the optimal \n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\n codes are equivalent to linear codes, which can be evaluated by computer with a computation cost \n<inline-formula> <tex-math>$O(n^{6})$ </tex-math></inline-formula>\n.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 1","pages":"138-166"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Optimal Finite-Length Block Codes of Size Four for Binary Symmetric Channels\",\"authors\":\"Yanyan Dong;Shenghao Yang\",\"doi\":\"10.1109/TIT.2024.3504823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An \\n<inline-formula> <tex-math>$(n,M)$ </tex-math></inline-formula>\\n code refers to a binary code with blocklength n and codebook size M. Such codes are studied in the context of memoryless binary symmetric channels (BSCs) with maximum likelihood (ML) decoding. Previous research has characterized some optimal codes among the linear \\n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\\n codes for any \\n<inline-formula> <tex-math>$n \\\\geq 2$ </tex-math></inline-formula>\\n. However, it was unknown whether these optimal codes among linear codes were better than all nonlinear codes. In this paper, we first demonstrate that for any \\n<inline-formula> <tex-math>$n \\\\geq 2$ </tex-math></inline-formula>\\n, there exists an optimal code among all \\n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\\n codes that is either linear or belongs to a subset of nonlinear codes called Class-I codes. We identify all the optimal codes among the linear \\n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\\n codes for each blocklength \\n<inline-formula> <tex-math>$n \\\\geq 2$ </tex-math></inline-formula>\\n and discover some that were not previously reported in the literature. For any n from 2 to 8, all the optimal \\n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\\n codes are identified. Except for \\n<inline-formula> <tex-math>$n=3$ </tex-math></inline-formula>\\n, all the optimal \\n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\\n codes are equivalent to linear codes. There exist optimal \\n<inline-formula> <tex-math>$(3,4)$ </tex-math></inline-formula>\\n codes that are not equivalent to linear codes. Furthermore, we introduce a subset of nonlinear codes called Class-II codes and show that for any \\n<inline-formula> <tex-math>$n \\\\gt 3$ </tex-math></inline-formula>\\n, the set composed of linear, Class-I, and Class-II codes and their equivalent codes contains all the optimal \\n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\\n codes. Both Class-I and Class-II codes are close to linear codes in the sense that they involve only one type of column that is not included in linear codes. We derive a sufficient condition such that all the optimal \\n<inline-formula> <tex-math>$(n,4)$ </tex-math></inline-formula>\\n codes are equivalent to linear codes, which can be evaluated by computer with a computation cost \\n<inline-formula> <tex-math>$O(n^{6})$ </tex-math></inline-formula>\\n.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 1\",\"pages\":\"138-166\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10764765/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10764765/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

$(n,M)$码是指块长度为n,码本大小为m的二进制码。本文在具有最大似然(ML)解码的无内存二进制对称信道(BSCs)的背景下研究了这种码。先前的研究已经在任意$n \geq 2$的线性$(n,4)$码中描述了一些最优码。然而,线性码中的这些最优码是否优于所有非线性码,目前尚不清楚。在本文中,我们首先证明了对于任意$n \geq 2$,在所有$(n,4)$码中存在一个最优码,该码要么是线性的,要么属于称为i类码的非线性码子集。我们确定了每个块长度$n \geq 2$的线性$(n,4)$代码中的所有最优代码,并发现了一些以前未在文献中报道的代码。对于从2到8的任意n,所有最优$(n,4)$代码都被识别出来。除$n=3$外,所有的最优$(n,4)$码都等价于线性码。存在不等同于线性码的最优$(3,4)$码。进一步,我们引入了一类非线性码的子集,即二类码,并证明了对于任意$n \gt 3$,由线性码、一类码和二类码及其等价码组成的集合包含了所有最优的$(n,4)$码。i类和ii类代码都接近线性代码,因为它们只涉及一种不包括在线性代码中的列。我们得到了所有最优$(n,4)$码都等价于线性码的充分条件,该条件可以用计算机计算,计算成本为$O(n^{6})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Optimal Finite-Length Block Codes of Size Four for Binary Symmetric Channels
An $(n,M)$ code refers to a binary code with blocklength n and codebook size M. Such codes are studied in the context of memoryless binary symmetric channels (BSCs) with maximum likelihood (ML) decoding. Previous research has characterized some optimal codes among the linear $(n,4)$ codes for any $n \geq 2$ . However, it was unknown whether these optimal codes among linear codes were better than all nonlinear codes. In this paper, we first demonstrate that for any $n \geq 2$ , there exists an optimal code among all $(n,4)$ codes that is either linear or belongs to a subset of nonlinear codes called Class-I codes. We identify all the optimal codes among the linear $(n,4)$ codes for each blocklength $n \geq 2$ and discover some that were not previously reported in the literature. For any n from 2 to 8, all the optimal $(n,4)$ codes are identified. Except for $n=3$ , all the optimal $(n,4)$ codes are equivalent to linear codes. There exist optimal $(3,4)$ codes that are not equivalent to linear codes. Furthermore, we introduce a subset of nonlinear codes called Class-II codes and show that for any $n \gt 3$ , the set composed of linear, Class-I, and Class-II codes and their equivalent codes contains all the optimal $(n,4)$ codes. Both Class-I and Class-II codes are close to linear codes in the sense that they involve only one type of column that is not included in linear codes. We derive a sufficient condition such that all the optimal $(n,4)$ codes are equivalent to linear codes, which can be evaluated by computer with a computation cost $O(n^{6})$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信