稀疏投影矩阵逼近及其应用

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zheng Zhai;Mingxin Wu;Jialu Xu;Xiaohui Li
{"title":"稀疏投影矩阵逼近及其应用","authors":"Zheng Zhai;Mingxin Wu;Jialu Xu;Xiaohui Li","doi":"10.1109/LSP.2024.3519459","DOIUrl":null,"url":null,"abstract":"This letter introduces a sparse regularized projection matrix approximation (SPMA) model to recover cluster structures from affinity matrices. The model is formulated as a projection approximation problem with an entry-wise sparsity penalty to encourage sparse solutions. We propose two algorithms to solve this problem: one involves direct optimization on the Stiefel manifold using the Cayley transformation, while the other employs the Alternating Direction Method of Multipliers (ADMM). Numerical experiments on synthetic and real-world datasets demonstrate that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering accuracy and performance.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"351-355"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Projection Matrix Approximation and Its Applications\",\"authors\":\"Zheng Zhai;Mingxin Wu;Jialu Xu;Xiaohui Li\",\"doi\":\"10.1109/LSP.2024.3519459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces a sparse regularized projection matrix approximation (SPMA) model to recover cluster structures from affinity matrices. The model is formulated as a projection approximation problem with an entry-wise sparsity penalty to encourage sparse solutions. We propose two algorithms to solve this problem: one involves direct optimization on the Stiefel manifold using the Cayley transformation, while the other employs the Alternating Direction Method of Multipliers (ADMM). Numerical experiments on synthetic and real-world datasets demonstrate that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering accuracy and performance.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"351-355\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804567/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10804567/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种稀疏正则化投影矩阵近似(SPMA)模型,用于从亲和矩阵中恢复簇结构。该模型被表述为具有入口稀疏性惩罚的投影近似问题,以鼓励稀疏解。我们提出了两种算法来解决这个问题:一种是使用Cayley变换对Stiefel流形进行直接优化,而另一种是使用乘法器的交替方向方法(ADMM)。在合成数据集和真实数据集上的数值实验表明,我们的正则化投影矩阵近似方法在聚类精度和性能方面明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Projection Matrix Approximation and Its Applications
This letter introduces a sparse regularized projection matrix approximation (SPMA) model to recover cluster structures from affinity matrices. The model is formulated as a projection approximation problem with an entry-wise sparsity penalty to encourage sparse solutions. We propose two algorithms to solve this problem: one involves direct optimization on the Stiefel manifold using the Cayley transformation, while the other employs the Alternating Direction Method of Multipliers (ADMM). Numerical experiments on synthetic and real-world datasets demonstrate that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering accuracy and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信