{"title":"柔性,稳定和自供电二维层状纳米复合材料(PANI@MoS2)用于微量氨气检测","authors":"Cheng Chen, Qian Tu, Xin Zhou, Jiaxin Xu, Caihong Lv, Xianwen Ke, Houbin Li, Liangzhe Chen, Xinghai Liu","doi":"10.1007/s42114-024-01204-x","DOIUrl":null,"url":null,"abstract":"<div><p>Reliable self-powered provision and stretchability are significant challenges for achieving portable gas detection, but reports have difficulties to achieve either so far. In this paper, 2D layered PANI@MoS<sub>2</sub> composite with promising energy storage and NH<sub>3</sub>-sensitive properties was synthesized by NH<sub>4</sub><sup>+</sup> insertion and in-situ growth technique. Because of the unique layered structure facilitating rapid reversible diffusion of charge ions, the energy storage properties of composite was significantly improved (838.7 F/g at 1A/g current density), and the assembled device could power a LED bulb for more than 20 min. Furthermore, due to the formation of p-n heterojunction and Schottky barrier between PANI and MoS<sub>2</sub>, as well as the enhancement of PANI’s structure and dispersion via polystyrene sulfonic acid along with nylon filter membrane, the sensitivity of sensor film exceeded 287 Ω/ppm, and the theoretical detection limit even reached 0.662 ppb by calculation. Ultimately, benefit from the outstanding stability and stretchability of the devices, by integrating the supercapacitor and sensor film, a semi-quantitative, real-time detection of spoiled food and exhaled gas from people was achieved. The self-powered sensing device was anticipated to be an important candidate in flexible wearable sensing arena.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible, stable and self-powered two-dimensional layered nanocomposites (PANI@MoS2) for trace ammonia gas detection\",\"authors\":\"Cheng Chen, Qian Tu, Xin Zhou, Jiaxin Xu, Caihong Lv, Xianwen Ke, Houbin Li, Liangzhe Chen, Xinghai Liu\",\"doi\":\"10.1007/s42114-024-01204-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reliable self-powered provision and stretchability are significant challenges for achieving portable gas detection, but reports have difficulties to achieve either so far. In this paper, 2D layered PANI@MoS<sub>2</sub> composite with promising energy storage and NH<sub>3</sub>-sensitive properties was synthesized by NH<sub>4</sub><sup>+</sup> insertion and in-situ growth technique. Because of the unique layered structure facilitating rapid reversible diffusion of charge ions, the energy storage properties of composite was significantly improved (838.7 F/g at 1A/g current density), and the assembled device could power a LED bulb for more than 20 min. Furthermore, due to the formation of p-n heterojunction and Schottky barrier between PANI and MoS<sub>2</sub>, as well as the enhancement of PANI’s structure and dispersion via polystyrene sulfonic acid along with nylon filter membrane, the sensitivity of sensor film exceeded 287 Ω/ppm, and the theoretical detection limit even reached 0.662 ppb by calculation. Ultimately, benefit from the outstanding stability and stretchability of the devices, by integrating the supercapacitor and sensor film, a semi-quantitative, real-time detection of spoiled food and exhaled gas from people was achieved. The self-powered sensing device was anticipated to be an important candidate in flexible wearable sensing arena.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01204-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01204-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Flexible, stable and self-powered two-dimensional layered nanocomposites (PANI@MoS2) for trace ammonia gas detection
Reliable self-powered provision and stretchability are significant challenges for achieving portable gas detection, but reports have difficulties to achieve either so far. In this paper, 2D layered PANI@MoS2 composite with promising energy storage and NH3-sensitive properties was synthesized by NH4+ insertion and in-situ growth technique. Because of the unique layered structure facilitating rapid reversible diffusion of charge ions, the energy storage properties of composite was significantly improved (838.7 F/g at 1A/g current density), and the assembled device could power a LED bulb for more than 20 min. Furthermore, due to the formation of p-n heterojunction and Schottky barrier between PANI and MoS2, as well as the enhancement of PANI’s structure and dispersion via polystyrene sulfonic acid along with nylon filter membrane, the sensitivity of sensor film exceeded 287 Ω/ppm, and the theoretical detection limit even reached 0.662 ppb by calculation. Ultimately, benefit from the outstanding stability and stretchability of the devices, by integrating the supercapacitor and sensor film, a semi-quantitative, real-time detection of spoiled food and exhaled gas from people was achieved. The self-powered sensing device was anticipated to be an important candidate in flexible wearable sensing arena.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.