基于计算流体动力学和响应面方法的土壤养分实时检测微流控系统分析与优化

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Sachin M. Khomane, Pradeep Vitthal Jadhav
{"title":"基于计算流体动力学和响应面方法的土壤养分实时检测微流控系统分析与优化","authors":"Sachin M. Khomane,&nbsp;Pradeep Vitthal Jadhav","doi":"10.1007/s10404-024-02781-5","DOIUrl":null,"url":null,"abstract":"<div><p>Microfluidics is turning out to be essential for the advancement of scientific research, healthcare, and various other applications due to its ability to provide precise control, miniaturization, and integration of fluid samples. Existing research shows a considerable growth rate in the utilization of microfluidics-based techniques, especially in the biomedical field for disease detection, drug analysis, cell analysis, and more. However, the development of microfluidic systems for soil nutrition testing applications is still a challenging task due to the need for micro scale dimensions and a high degree of precision during the fabrication and detection of soil nutrients. The present investigation aims to find the most suitable design for the microfluidic chip that can control and detect microfluid containing soil nutrients, especially nitrites, effectively. To achieve this goal, the parameters of different microchannel (MC) specimens, such as snug height, channel width, obstacle pitch, mean mixture pressure, wall shear stress, strain rate, and total pressure, are analyzed. In addition, the Response Surface Methodology (RSM) is introduced to statistically authenticate the obtained simulation data. As a result, the present investigation proposes the optimal MC design with optimal parameters: snug height of 0.35 mm, channel width of 1.54 mm, obstacle pitch of 2.5 mm, mean mixture pressure of 0.24 MPa, wall shear stress of 1.1 Pa, strain rate of 2259 s<sup>−1</sup>, and total pressure of 1.42 MPa. Moreover, the functionality of the proposed microfluidic chip was calibrated and predicted using the Deep Neural Network-based Modified Sea Horse Optimizer (DNN-MSHO) algorithm, confirming the presence of nitrites in the used soil samples in a range of 2.81–4.18 ppm, which again proves the efficiency and trustworthiness of the proposed microfluidic chip design and its usability in real soil testing applications.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and optimization of microfluidic systems for real-time detection of nutrients in soil based on computational fluid dynamics and response surface methodology\",\"authors\":\"Sachin M. Khomane,&nbsp;Pradeep Vitthal Jadhav\",\"doi\":\"10.1007/s10404-024-02781-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microfluidics is turning out to be essential for the advancement of scientific research, healthcare, and various other applications due to its ability to provide precise control, miniaturization, and integration of fluid samples. Existing research shows a considerable growth rate in the utilization of microfluidics-based techniques, especially in the biomedical field for disease detection, drug analysis, cell analysis, and more. However, the development of microfluidic systems for soil nutrition testing applications is still a challenging task due to the need for micro scale dimensions and a high degree of precision during the fabrication and detection of soil nutrients. The present investigation aims to find the most suitable design for the microfluidic chip that can control and detect microfluid containing soil nutrients, especially nitrites, effectively. To achieve this goal, the parameters of different microchannel (MC) specimens, such as snug height, channel width, obstacle pitch, mean mixture pressure, wall shear stress, strain rate, and total pressure, are analyzed. In addition, the Response Surface Methodology (RSM) is introduced to statistically authenticate the obtained simulation data. As a result, the present investigation proposes the optimal MC design with optimal parameters: snug height of 0.35 mm, channel width of 1.54 mm, obstacle pitch of 2.5 mm, mean mixture pressure of 0.24 MPa, wall shear stress of 1.1 Pa, strain rate of 2259 s<sup>−1</sup>, and total pressure of 1.42 MPa. Moreover, the functionality of the proposed microfluidic chip was calibrated and predicted using the Deep Neural Network-based Modified Sea Horse Optimizer (DNN-MSHO) algorithm, confirming the presence of nitrites in the used soil samples in a range of 2.81–4.18 ppm, which again proves the efficiency and trustworthiness of the proposed microfluidic chip design and its usability in real soil testing applications.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"29 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02781-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02781-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

由于微流体能够提供流体样品的精确控制、小型化和集成,因此微流体对于科学研究、医疗保健和各种其他应用的进步至关重要。现有的研究表明,基于微流体技术的应用有相当大的增长速度,特别是在生物医学领域,用于疾病检测、药物分析、细胞分析等。然而,由于在土壤养分的制造和检测过程中需要微观尺度和高度精度,因此开发用于土壤养分检测的微流体系统仍然是一项具有挑战性的任务。本研究旨在寻找最合适的微流控芯片设计,以有效控制和检测含有土壤养分,特别是亚硝酸盐的微流体。为了实现这一目标,分析了不同微通道(MC)试件的紧致高度、通道宽度、障碍物间距、平均混合压力、壁面剪切应力、应变率和总压等参数。此外,还引入响应面法(RSM)对仿真数据进行统计验证。基于此,本文提出了最佳MC设计方案,优化参数为:舒适高度0.35 mm,通道宽度1.54 mm,障碍物间距2.5 mm,平均混合压力0.24 MPa,壁剪应力1.1 Pa,应变速率2259 s−1,总压力1.42 MPa。此外,采用基于深度神经网络的改进海马优化器(DNN-MSHO)算法对所提出的微流控芯片的功能进行了校准和预测,确认了使用的土壤样品中亚硝酸盐的存在范围为2.81-4.18 ppm,再次证明了所提出的微流控芯片设计的效率和可靠性及其在实际土壤测试应用中的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis and optimization of microfluidic systems for real-time detection of nutrients in soil based on computational fluid dynamics and response surface methodology

Analysis and optimization of microfluidic systems for real-time detection of nutrients in soil based on computational fluid dynamics and response surface methodology

Microfluidics is turning out to be essential for the advancement of scientific research, healthcare, and various other applications due to its ability to provide precise control, miniaturization, and integration of fluid samples. Existing research shows a considerable growth rate in the utilization of microfluidics-based techniques, especially in the biomedical field for disease detection, drug analysis, cell analysis, and more. However, the development of microfluidic systems for soil nutrition testing applications is still a challenging task due to the need for micro scale dimensions and a high degree of precision during the fabrication and detection of soil nutrients. The present investigation aims to find the most suitable design for the microfluidic chip that can control and detect microfluid containing soil nutrients, especially nitrites, effectively. To achieve this goal, the parameters of different microchannel (MC) specimens, such as snug height, channel width, obstacle pitch, mean mixture pressure, wall shear stress, strain rate, and total pressure, are analyzed. In addition, the Response Surface Methodology (RSM) is introduced to statistically authenticate the obtained simulation data. As a result, the present investigation proposes the optimal MC design with optimal parameters: snug height of 0.35 mm, channel width of 1.54 mm, obstacle pitch of 2.5 mm, mean mixture pressure of 0.24 MPa, wall shear stress of 1.1 Pa, strain rate of 2259 s−1, and total pressure of 1.42 MPa. Moreover, the functionality of the proposed microfluidic chip was calibrated and predicted using the Deep Neural Network-based Modified Sea Horse Optimizer (DNN-MSHO) algorithm, confirming the presence of nitrites in the used soil samples in a range of 2.81–4.18 ppm, which again proves the efficiency and trustworthiness of the proposed microfluidic chip design and its usability in real soil testing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信