氢氧化钾处理的膨润土生物炭复合材料去除水中铵

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL
Thao Hoang-Minh, Nguyen Thi Hai, Do Trung Hieu, Ta Thi Hoai, Bui Van Dong, Luu Viet Dung, Nguyen Thi Hoang Ha
{"title":"氢氧化钾处理的膨润土生物炭复合材料去除水中铵","authors":"Thao Hoang-Minh,&nbsp;Nguyen Thi Hai,&nbsp;Do Trung Hieu,&nbsp;Ta Thi Hoai,&nbsp;Bui Van Dong,&nbsp;Luu Viet Dung,&nbsp;Nguyen Thi Hoang Ha","doi":"10.1007/s00396-024-05335-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel adsorbent—KOH-treated bentonite biochar composite (BRK) derived from natural bentonite and rice husk—was successfully synthesized to remove ammonium (NH<sub>4</sub><sup>+</sup>) from water. Adsorbent preparation involved pyrolysis at 400 °C followed by activation of biochar with KOH to produce BRK. Various techniques were applied to characterize the investigated adsorbent, including Fourier-transform infrared spectroscopy (FTIR), N<sub>2</sub> adsorption analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) integrated with energy-dispersive X-ray (EDX) spectroscopy. Batch experiments were conducted for elucidating the factors influencing the adsorption process, including pH, contact time, temperature, initial ammonium concentration, and the presence of co-existing cations in the solution. The results showed that the pH of the solution strongly affected BRK’s adsorption capacity for NH<sub>4</sub><sup>+</sup> ions. Co-existing cations (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>) significantly reduced the removal efficiency of NH<sub>4</sub><sup>+</sup> ions. The Langmuir adsorption capacity of BRK for NH<sub>4</sub><sup>+</sup> followed the order: 22.51 mg/g (10 °C) &gt; 20.57 mg/g (30 °C) &gt; 16.22 mg/g (50 °C). The negative standard enthalpy change (∆H°) obtained in thermodynamic study suggested that the adsorption process of NH<sub>4</sub><sup>+</sup> was exothermic. The kinetic experiments demonstrated that adsorption equilibrium was achieved after 30 min of contact. Ion exchange was found to be the main adsorption mechanism for removing NH<sub>4</sub><sup>+</sup> by BRK. This study proved that BRK is a low-cost and sustainable adsorbent derived from natural bentonite and rice husk and is advantageous for removing NH<sub>4</sub><sup>+</sup> from water. </p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 1","pages":"81 - 94"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00396-024-05335-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Removal of ammonium from water by a KOH-treated bentonite biochar composite\",\"authors\":\"Thao Hoang-Minh,&nbsp;Nguyen Thi Hai,&nbsp;Do Trung Hieu,&nbsp;Ta Thi Hoai,&nbsp;Bui Van Dong,&nbsp;Luu Viet Dung,&nbsp;Nguyen Thi Hoang Ha\",\"doi\":\"10.1007/s00396-024-05335-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a novel adsorbent—KOH-treated bentonite biochar composite (BRK) derived from natural bentonite and rice husk—was successfully synthesized to remove ammonium (NH<sub>4</sub><sup>+</sup>) from water. Adsorbent preparation involved pyrolysis at 400 °C followed by activation of biochar with KOH to produce BRK. Various techniques were applied to characterize the investigated adsorbent, including Fourier-transform infrared spectroscopy (FTIR), N<sub>2</sub> adsorption analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) integrated with energy-dispersive X-ray (EDX) spectroscopy. Batch experiments were conducted for elucidating the factors influencing the adsorption process, including pH, contact time, temperature, initial ammonium concentration, and the presence of co-existing cations in the solution. The results showed that the pH of the solution strongly affected BRK’s adsorption capacity for NH<sub>4</sub><sup>+</sup> ions. Co-existing cations (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>) significantly reduced the removal efficiency of NH<sub>4</sub><sup>+</sup> ions. The Langmuir adsorption capacity of BRK for NH<sub>4</sub><sup>+</sup> followed the order: 22.51 mg/g (10 °C) &gt; 20.57 mg/g (30 °C) &gt; 16.22 mg/g (50 °C). The negative standard enthalpy change (∆H°) obtained in thermodynamic study suggested that the adsorption process of NH<sub>4</sub><sup>+</sup> was exothermic. The kinetic experiments demonstrated that adsorption equilibrium was achieved after 30 min of contact. Ion exchange was found to be the main adsorption mechanism for removing NH<sub>4</sub><sup>+</sup> by BRK. This study proved that BRK is a low-cost and sustainable adsorbent derived from natural bentonite and rice husk and is advantageous for removing NH<sub>4</sub><sup>+</sup> from water. </p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"303 1\",\"pages\":\"81 - 94\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00396-024-05335-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-024-05335-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05335-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以天然膨润土和稻壳为原料,制备了一种新型吸附材料——koh处理的膨润土生物炭复合材料(BRK),用于去除水中铵离子。吸附剂的制备包括在400°C下热解,然后用KOH活化生物炭以产生BRK。采用傅里叶变换红外光谱(FTIR)、N2吸附分析、x射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散x射线(EDX)光谱等技术对所研究的吸附剂进行了表征。通过批量实验研究了pH、接触时间、温度、初始铵浓度和溶液中共存阳离子的存在等因素对吸附过程的影响。结果表明,溶液pH对BRK对NH4+离子的吸附能力影响较大。共存的阳离子(Na+、K+、Ca2+和Mg2+)显著降低了NH4+离子的去除效率。BRK对NH4+的Langmuir吸附量依次为:22.51 mg/g(10℃)> 20.57 mg/g(30℃)> 16.22 mg/g(50℃)。热力学研究中得到的负标准焓变(∆H°)表明,NH4+的吸附过程是放热的。动力学实验表明,接触30min后达到吸附平衡。离子交换是BRK去除NH4+的主要吸附机制。本研究证明BRK是从天然膨润土和稻壳中提取的一种低成本、可持续的吸附剂,有利于去除水中的NH4+。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Removal of ammonium from water by a KOH-treated bentonite biochar composite

In this study, a novel adsorbent—KOH-treated bentonite biochar composite (BRK) derived from natural bentonite and rice husk—was successfully synthesized to remove ammonium (NH4+) from water. Adsorbent preparation involved pyrolysis at 400 °C followed by activation of biochar with KOH to produce BRK. Various techniques were applied to characterize the investigated adsorbent, including Fourier-transform infrared spectroscopy (FTIR), N2 adsorption analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) integrated with energy-dispersive X-ray (EDX) spectroscopy. Batch experiments were conducted for elucidating the factors influencing the adsorption process, including pH, contact time, temperature, initial ammonium concentration, and the presence of co-existing cations in the solution. The results showed that the pH of the solution strongly affected BRK’s adsorption capacity for NH4+ ions. Co-existing cations (Na+, K+, Ca2+, and Mg2+) significantly reduced the removal efficiency of NH4+ ions. The Langmuir adsorption capacity of BRK for NH4+ followed the order: 22.51 mg/g (10 °C) > 20.57 mg/g (30 °C) > 16.22 mg/g (50 °C). The negative standard enthalpy change (∆H°) obtained in thermodynamic study suggested that the adsorption process of NH4+ was exothermic. The kinetic experiments demonstrated that adsorption equilibrium was achieved after 30 min of contact. Ion exchange was found to be the main adsorption mechanism for removing NH4+ by BRK. This study proved that BRK is a low-cost and sustainable adsorbent derived from natural bentonite and rice husk and is advantageous for removing NH4+ from water.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信