利用磁性纳米流体和外磁场协同作用增强电动汽车电池冷却

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Suvanjan Bhattacharyya, Nancy Maurya, Naman Jain, Devendra Kumar Vishwakarma
{"title":"利用磁性纳米流体和外磁场协同作用增强电动汽车电池冷却","authors":"Suvanjan Bhattacharyya,&nbsp;Nancy Maurya,&nbsp;Naman Jain,&nbsp;Devendra Kumar Vishwakarma","doi":"10.1007/s10973-024-13829-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study delves into the computational exploration of the impact of magnetic intensity, magnetic nanofluid, flow rates and heat transfer coefficient in the form of Nusselt number on inclined ribbed channels with both parallel and staggered configurations for the cooling of sodium-ion and lithium-ion batteries in electric vehicles. Employing Fe<sub>3</sub>O<sub>4</sub> + H<sub>2</sub>O as the working fluid, within a minichannel with multiple magnets at different locations, namely 15 mm, 25 mm and 15 mm and 25 mm, the parallel and staggered inclined ribbed channel Nusselt number (Nu) increased with magnetic field intensity, reaching maximum of 152.81% for staggered ribbed minichannel configuration at 2000 Gauss (G). Similarly, the skin friction experienced an increment with magnetic field intensity for staggered ribbed minichannel configuration and for parallel ribbed minichannel when both the magnets were placed at the location of 15 mm and 25 mm from the inlet but decreased with increasing Reynolds number. Notably, the thermal enhancement factor (TEF) consistently surpassed greater than unity for all investigated cases. These findings carry significant implications, particularly in EV cooling, offering valuable insights for developing more efficient and tailored cooling solutions for advanced EV battery thermal management.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"14971 - 14990"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10973-024-13829-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing EV battery cooling using magnetic nanofluid and external magnetic field synergies\",\"authors\":\"Suvanjan Bhattacharyya,&nbsp;Nancy Maurya,&nbsp;Naman Jain,&nbsp;Devendra Kumar Vishwakarma\",\"doi\":\"10.1007/s10973-024-13829-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study delves into the computational exploration of the impact of magnetic intensity, magnetic nanofluid, flow rates and heat transfer coefficient in the form of Nusselt number on inclined ribbed channels with both parallel and staggered configurations for the cooling of sodium-ion and lithium-ion batteries in electric vehicles. Employing Fe<sub>3</sub>O<sub>4</sub> + H<sub>2</sub>O as the working fluid, within a minichannel with multiple magnets at different locations, namely 15 mm, 25 mm and 15 mm and 25 mm, the parallel and staggered inclined ribbed channel Nusselt number (Nu) increased with magnetic field intensity, reaching maximum of 152.81% for staggered ribbed minichannel configuration at 2000 Gauss (G). Similarly, the skin friction experienced an increment with magnetic field intensity for staggered ribbed minichannel configuration and for parallel ribbed minichannel when both the magnets were placed at the location of 15 mm and 25 mm from the inlet but decreased with increasing Reynolds number. Notably, the thermal enhancement factor (TEF) consistently surpassed greater than unity for all investigated cases. These findings carry significant implications, particularly in EV cooling, offering valuable insights for developing more efficient and tailored cooling solutions for advanced EV battery thermal management.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 24\",\"pages\":\"14971 - 14990\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10973-024-13829-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13829-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13829-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过计算探索了磁性强度、磁性纳米流体、流速和努塞尔数形式的传热系数对电动汽车钠离子和锂离子电池平行和交错配置的斜肋通道的影响。以Fe3O4 + H2O为工作流体,在15mm、25mm和15mm、25mm不同位置有多个磁体的小通道内,平行和交错倾斜肋状小通道的努塞尔数(Nu)随磁场强度增加而增加,在2000高斯(G)时,交错肋状小通道构型的努塞尔数(Nu)达到最大值152.81%。在距进气道15 mm和25 mm位置放置磁体时,交错肋状小通道和平行肋状小通道的表面摩擦力随磁场强度的增加而增加,但随雷诺数的增加而减小。值得注意的是,热增强因子(TEF)一致超过大于统一的所有调查的情况下。这些发现具有重要意义,特别是在电动汽车冷却方面,为开发更高效、量身定制的先进电动汽车电池热管理冷却解决方案提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing EV battery cooling using magnetic nanofluid and external magnetic field synergies

This study delves into the computational exploration of the impact of magnetic intensity, magnetic nanofluid, flow rates and heat transfer coefficient in the form of Nusselt number on inclined ribbed channels with both parallel and staggered configurations for the cooling of sodium-ion and lithium-ion batteries in electric vehicles. Employing Fe3O4 + H2O as the working fluid, within a minichannel with multiple magnets at different locations, namely 15 mm, 25 mm and 15 mm and 25 mm, the parallel and staggered inclined ribbed channel Nusselt number (Nu) increased with magnetic field intensity, reaching maximum of 152.81% for staggered ribbed minichannel configuration at 2000 Gauss (G). Similarly, the skin friction experienced an increment with magnetic field intensity for staggered ribbed minichannel configuration and for parallel ribbed minichannel when both the magnets were placed at the location of 15 mm and 25 mm from the inlet but decreased with increasing Reynolds number. Notably, the thermal enhancement factor (TEF) consistently surpassed greater than unity for all investigated cases. These findings carry significant implications, particularly in EV cooling, offering valuable insights for developing more efficient and tailored cooling solutions for advanced EV battery thermal management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信