基于代理的变几何抛物线槽集热器优化

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Felipe Pelissari, José C. Costa Filho, Wallace G. Ferreira, Daniel J. Dezan
{"title":"基于代理的变几何抛物线槽集热器优化","authors":"Felipe Pelissari,&nbsp;José C. Costa Filho,&nbsp;Wallace G. Ferreira,&nbsp;Daniel J. Dezan","doi":"10.1007/s10973-024-13774-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the current research, a quasi-two-dimensional numerical model is used for energetic and exergetic performance predictions taking into account eight inline PTC modules with variable geometries along with the main flow direction, for Therminol VP-1 and Syltherm 800 heat transfer fluids. There are a total of thirty-seven input variables, being thirty-two regarding the geometrical parameters and five environmental/operating parameters. Surrogate-based optimization procedures (Kriging metamodel combined with Non-Dominated Sorting Genetic Algorithm, NSGA-II) are used to build the Pareto frontier for two objective functions: (i) maximization of both useful gain and thermal efficiency and (ii) maximization of useful gain and minimization of exergy destruction. The optimization results indicated that the useful gain of 8 inline PTC array can reach up to 1.0 MW for both thermal oils. By variation in the input parameters along with the PTC array, a broad range useful gain can be achieved, with negligible thermal efficiency degradation. With regard to the Pareto frontier of useful gain and exergy destruction, there is an important asymptotic point for useful gain, in which its augmentation just promotes the increase in exergy destruction. In terms of concentration ratio, the Pareto fronts showed that about 95% and 90% of PTC modules can be assumed at “heterogeneous” along with the array for the first and second objective functions, respectively. At last, convective heat transfer coefficient and outer receiver and outer glass cover temperatures along with the PTC array for different individuals of the Pareto fronts are discussed in detail.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"14791 - 14818"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surrogate-based optimization applied to parabolic trough collectors with variable geometry\",\"authors\":\"Felipe Pelissari,&nbsp;José C. Costa Filho,&nbsp;Wallace G. Ferreira,&nbsp;Daniel J. Dezan\",\"doi\":\"10.1007/s10973-024-13774-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the current research, a quasi-two-dimensional numerical model is used for energetic and exergetic performance predictions taking into account eight inline PTC modules with variable geometries along with the main flow direction, for Therminol VP-1 and Syltherm 800 heat transfer fluids. There are a total of thirty-seven input variables, being thirty-two regarding the geometrical parameters and five environmental/operating parameters. Surrogate-based optimization procedures (Kriging metamodel combined with Non-Dominated Sorting Genetic Algorithm, NSGA-II) are used to build the Pareto frontier for two objective functions: (i) maximization of both useful gain and thermal efficiency and (ii) maximization of useful gain and minimization of exergy destruction. The optimization results indicated that the useful gain of 8 inline PTC array can reach up to 1.0 MW for both thermal oils. By variation in the input parameters along with the PTC array, a broad range useful gain can be achieved, with negligible thermal efficiency degradation. With regard to the Pareto frontier of useful gain and exergy destruction, there is an important asymptotic point for useful gain, in which its augmentation just promotes the increase in exergy destruction. In terms of concentration ratio, the Pareto fronts showed that about 95% and 90% of PTC modules can be assumed at “heterogeneous” along with the array for the first and second objective functions, respectively. At last, convective heat transfer coefficient and outer receiver and outer glass cover temperatures along with the PTC array for different individuals of the Pareto fronts are discussed in detail.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 24\",\"pages\":\"14791 - 14818\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13774-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13774-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在目前的研究中,针对Therminol VP-1和Syltherm 800传热流体,采用准二维数值模型进行能量和火用性能预测,该模型考虑了8个随主流方向变化几何形状的内联PTC模块。总共有37个输入变量,其中32个是几何参数,5个是环境/操作参数。基于代理的优化程序(Kriging元模型结合非支配排序遗传算法NSGA-II)用于构建两个目标函数的Pareto边界:(i)有用增益和热效率的最大化;(ii)有用增益的最大化和火用破坏的最小化。优化结果表明,对于两种热油,8联装PTC阵列的有效增益均可达到1.0 MW。随着PTC阵列输入参数的变化,可以实现大范围的有用增益,而热效率下降可以忽略不计。对于有用增益和自用破坏的Pareto边界,有用增益有一个重要的渐近点,在这个渐近点上,有用增益的增大正好促进自用破坏的增大。在集中比方面,Pareto前沿表明,大约95%和90%的PTC模块可以分别与第一和第二目标函数的阵列一起被假设为“异构”。最后详细讨论了不同帕累托锋面个体的对流换热系数、外接收器和外玻璃罩温度以及PTC阵列温度。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surrogate-based optimization applied to parabolic trough collectors with variable geometry

In the current research, a quasi-two-dimensional numerical model is used for energetic and exergetic performance predictions taking into account eight inline PTC modules with variable geometries along with the main flow direction, for Therminol VP-1 and Syltherm 800 heat transfer fluids. There are a total of thirty-seven input variables, being thirty-two regarding the geometrical parameters and five environmental/operating parameters. Surrogate-based optimization procedures (Kriging metamodel combined with Non-Dominated Sorting Genetic Algorithm, NSGA-II) are used to build the Pareto frontier for two objective functions: (i) maximization of both useful gain and thermal efficiency and (ii) maximization of useful gain and minimization of exergy destruction. The optimization results indicated that the useful gain of 8 inline PTC array can reach up to 1.0 MW for both thermal oils. By variation in the input parameters along with the PTC array, a broad range useful gain can be achieved, with negligible thermal efficiency degradation. With regard to the Pareto frontier of useful gain and exergy destruction, there is an important asymptotic point for useful gain, in which its augmentation just promotes the increase in exergy destruction. In terms of concentration ratio, the Pareto fronts showed that about 95% and 90% of PTC modules can be assumed at “heterogeneous” along with the array for the first and second objective functions, respectively. At last, convective heat transfer coefficient and outer receiver and outer glass cover temperatures along with the PTC array for different individuals of the Pareto fronts are discussed in detail.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信