{"title":"具有表面效应有限弹性层的Boussinesq问题","authors":"Hui Wu \n (, ), Sha Xiao \n (, ), Zhilong Peng \n (, ), Ning Jia \n (, ), Shaohua Chen \n (, )","doi":"10.1007/s10409-024-24352-x","DOIUrl":null,"url":null,"abstract":"<div><p>Both the thickness effect and surface effect should be important in nano-indentation behavior of coatings due to the finite thickness and small indentation size. As a basic solution, the two-dimensional Boussinesq problem of a finite elastic layer bonded to a rigid substrate is studied in this paper, employing the surface-energy-density-based elastic theory. The Airy stress function and Fourier integral transform methods are adopted to solve the problem. A nalytical solutions of both the stress and displacement fields are well achieved for a finite elastic layer under a concentrated force and a uniform pressure. Unlike the classical solutions, it is discovered that both the thickness effect and surface effect will show significant influences on the Boussinesq elastic behaviors. The surface effect would harden the finite elastic layer and induce a more uniformly distributing displacements and stresses. Only when the thickness is sufficiently large, the Boussinesq solution of an elastic half space may represent that of a finite elastic layer case. A generalized hardness is further defined to include the coupling effects of thickness and surface for the Boussinesq problem of a finite elastic layer. Such a study would assist in the design and property evaluation of coatings and micro-devices with layer-substrate structures.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 9","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boussinesq problem of a finite elastic layer with the surface effect\",\"authors\":\"Hui Wu \\n (, ), Sha Xiao \\n (, ), Zhilong Peng \\n (, ), Ning Jia \\n (, ), Shaohua Chen \\n (, )\",\"doi\":\"10.1007/s10409-024-24352-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Both the thickness effect and surface effect should be important in nano-indentation behavior of coatings due to the finite thickness and small indentation size. As a basic solution, the two-dimensional Boussinesq problem of a finite elastic layer bonded to a rigid substrate is studied in this paper, employing the surface-energy-density-based elastic theory. The Airy stress function and Fourier integral transform methods are adopted to solve the problem. A nalytical solutions of both the stress and displacement fields are well achieved for a finite elastic layer under a concentrated force and a uniform pressure. Unlike the classical solutions, it is discovered that both the thickness effect and surface effect will show significant influences on the Boussinesq elastic behaviors. The surface effect would harden the finite elastic layer and induce a more uniformly distributing displacements and stresses. Only when the thickness is sufficiently large, the Boussinesq solution of an elastic half space may represent that of a finite elastic layer case. A generalized hardness is further defined to include the coupling effects of thickness and surface for the Boussinesq problem of a finite elastic layer. Such a study would assist in the design and property evaluation of coatings and micro-devices with layer-substrate structures.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 9\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24352-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24352-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Boussinesq problem of a finite elastic layer with the surface effect
Both the thickness effect and surface effect should be important in nano-indentation behavior of coatings due to the finite thickness and small indentation size. As a basic solution, the two-dimensional Boussinesq problem of a finite elastic layer bonded to a rigid substrate is studied in this paper, employing the surface-energy-density-based elastic theory. The Airy stress function and Fourier integral transform methods are adopted to solve the problem. A nalytical solutions of both the stress and displacement fields are well achieved for a finite elastic layer under a concentrated force and a uniform pressure. Unlike the classical solutions, it is discovered that both the thickness effect and surface effect will show significant influences on the Boussinesq elastic behaviors. The surface effect would harden the finite elastic layer and induce a more uniformly distributing displacements and stresses. Only when the thickness is sufficiently large, the Boussinesq solution of an elastic half space may represent that of a finite elastic layer case. A generalized hardness is further defined to include the coupling effects of thickness and surface for the Boussinesq problem of a finite elastic layer. Such a study would assist in the design and property evaluation of coatings and micro-devices with layer-substrate structures.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics