Yi Zhang, Bingtao Wang, Yan Xia, Li Zhang, Yingke Zhu, Zhenghong Guo, Juan Li
{"title":"以固化剂和含磷基团改性的氮化硼为基料的高阻燃、高导热环氧复合材料","authors":"Yi Zhang, Bingtao Wang, Yan Xia, Li Zhang, Yingke Zhu, Zhenghong Guo, Juan Li","doi":"10.1007/s10973-024-13802-4","DOIUrl":null,"url":null,"abstract":"<div><p>High flame retardancy and thermal conductivity are key performances for advanced electronic packaging materials. Herein, boron nitride (BN) and epoxy curing agent were chemically bonded with highly flame retardant DOPO moieties to obtain BN-DOPO thermal conductive filler and DOPO-PA curing agent with flame retardancy. The effect of BN-DOPO and DOPO-PA on the thermal stability, flame retardancy, combustion behavior and thermal conductive performance of EP composites were analyzed in detail. Compared with EP/Al(OH)<sub>3</sub>, up to 32.5% in LOI, V0 rating in UL-94, prolonged 125 s of TTI, 22% reduction of PHRR and 29% reduction of THR in cone test were observed when both BN-DOPO and DOPO-PA were incorporated into EP cross-linking network. According to the residual char morphology, the excellent flame retardancy of EP/Al(OH)<sub>3</sub> composite containing BN-DOPO and DOPO-PA was attributed to the formation of compact front char covered by fluffy porous carbon and thick continuous back char with tiny aluminum oxide particles. Moreover, the introduction of a small amount of BN-DOPO and DOPO-PA could also greatly improve the thermal conductivity of EP/Al(OH)<sub>3</sub> by 107% due to the better compatibility resulting in lower interface thermal resistance and more effective thermal transfer caused by the participation of BN-DOPO and DOPO-PA into epoxy curing reactions.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"14687 - 14698"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly flame retardant and thermal conductive epoxy composites using curing agent and boron nitride modified by phosphorus containing group\",\"authors\":\"Yi Zhang, Bingtao Wang, Yan Xia, Li Zhang, Yingke Zhu, Zhenghong Guo, Juan Li\",\"doi\":\"10.1007/s10973-024-13802-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High flame retardancy and thermal conductivity are key performances for advanced electronic packaging materials. Herein, boron nitride (BN) and epoxy curing agent were chemically bonded with highly flame retardant DOPO moieties to obtain BN-DOPO thermal conductive filler and DOPO-PA curing agent with flame retardancy. The effect of BN-DOPO and DOPO-PA on the thermal stability, flame retardancy, combustion behavior and thermal conductive performance of EP composites were analyzed in detail. Compared with EP/Al(OH)<sub>3</sub>, up to 32.5% in LOI, V0 rating in UL-94, prolonged 125 s of TTI, 22% reduction of PHRR and 29% reduction of THR in cone test were observed when both BN-DOPO and DOPO-PA were incorporated into EP cross-linking network. According to the residual char morphology, the excellent flame retardancy of EP/Al(OH)<sub>3</sub> composite containing BN-DOPO and DOPO-PA was attributed to the formation of compact front char covered by fluffy porous carbon and thick continuous back char with tiny aluminum oxide particles. Moreover, the introduction of a small amount of BN-DOPO and DOPO-PA could also greatly improve the thermal conductivity of EP/Al(OH)<sub>3</sub> by 107% due to the better compatibility resulting in lower interface thermal resistance and more effective thermal transfer caused by the participation of BN-DOPO and DOPO-PA into epoxy curing reactions.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 24\",\"pages\":\"14687 - 14698\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13802-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13802-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Highly flame retardant and thermal conductive epoxy composites using curing agent and boron nitride modified by phosphorus containing group
High flame retardancy and thermal conductivity are key performances for advanced electronic packaging materials. Herein, boron nitride (BN) and epoxy curing agent were chemically bonded with highly flame retardant DOPO moieties to obtain BN-DOPO thermal conductive filler and DOPO-PA curing agent with flame retardancy. The effect of BN-DOPO and DOPO-PA on the thermal stability, flame retardancy, combustion behavior and thermal conductive performance of EP composites were analyzed in detail. Compared with EP/Al(OH)3, up to 32.5% in LOI, V0 rating in UL-94, prolonged 125 s of TTI, 22% reduction of PHRR and 29% reduction of THR in cone test were observed when both BN-DOPO and DOPO-PA were incorporated into EP cross-linking network. According to the residual char morphology, the excellent flame retardancy of EP/Al(OH)3 composite containing BN-DOPO and DOPO-PA was attributed to the formation of compact front char covered by fluffy porous carbon and thick continuous back char with tiny aluminum oxide particles. Moreover, the introduction of a small amount of BN-DOPO and DOPO-PA could also greatly improve the thermal conductivity of EP/Al(OH)3 by 107% due to the better compatibility resulting in lower interface thermal resistance and more effective thermal transfer caused by the participation of BN-DOPO and DOPO-PA into epoxy curing reactions.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.