Ali Hafs, Toufik Hafs, Djamel Berdjane, Amel Bendjama, Nesrine Hasnaoui
{"title":"湿法机械铣削法合成Fe90Nb10及其结构、磁性和热表征","authors":"Ali Hafs, Toufik Hafs, Djamel Berdjane, Amel Bendjama, Nesrine Hasnaoui","doi":"10.1007/s12034-024-03372-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study involves the synthesis of nanocrystalline Fe<sub>90</sub>Nb<sub>10</sub> (wt%) binary powders through the use of a high-energy planetary ball mill within an inert argon environment. The milling process was used to investigate changes in structure, morphology and magnetic properties. This was accomplished through the utilization of techniques such as X-ray diffraction (XRD) using the MAUD program, which is based on the Rietveld method, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and vibrating sample magnetometry. From the XRD analysis, it was observed that a disordered solid solution of αFe(Nb) with a body-centred cubic (bcc) crystal structure formed after 12 h of milling. Interestingly, the analysis also indicated that the average crystallite size 〈<i>D</i>〉 within this αFe(Nb) solid solution was remarkably small, measuring a mere 13.15 nm. Furthermore, the ultimate lattice strain 〈<i>σ</i><sup>2</sup>〉<sup>1/2</sup> was quantified at 1.08%. It is worth noting that the lattice parameter underwent a rapid and substantial increase, peaking at 0.2879 nm after 36 h of milling. The SEM analyses revealed the development of diverse morphologies at different milling stages. The elemental maps of Fe and Nb done with EDX experiments confirmed the results found by XRD about the evolution of the alloy formation. The changes in saturation magnetization (<i>M</i><sub>s</sub>), coercive field (<i>H</i><sub>c</sub>), remanent magnetization (<i>M</i><sub>r</sub>) and squareness ratio (<i>M</i><sub>r</sub>/<i>M</i><sub>s</sub>) were investigated in relation to microstructural modifications during the milling process. Annealing Fe<sub>90</sub>Nb<sub>10</sub> (wt%) samples promotes the formation of a homogeneous solid solution and increases coercivity.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Fe90Nb10 via wet mechanical milling method and its structural, magnetic and thermal characterization\",\"authors\":\"Ali Hafs, Toufik Hafs, Djamel Berdjane, Amel Bendjama, Nesrine Hasnaoui\",\"doi\":\"10.1007/s12034-024-03372-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study involves the synthesis of nanocrystalline Fe<sub>90</sub>Nb<sub>10</sub> (wt%) binary powders through the use of a high-energy planetary ball mill within an inert argon environment. The milling process was used to investigate changes in structure, morphology and magnetic properties. This was accomplished through the utilization of techniques such as X-ray diffraction (XRD) using the MAUD program, which is based on the Rietveld method, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and vibrating sample magnetometry. From the XRD analysis, it was observed that a disordered solid solution of αFe(Nb) with a body-centred cubic (bcc) crystal structure formed after 12 h of milling. Interestingly, the analysis also indicated that the average crystallite size 〈<i>D</i>〉 within this αFe(Nb) solid solution was remarkably small, measuring a mere 13.15 nm. Furthermore, the ultimate lattice strain 〈<i>σ</i><sup>2</sup>〉<sup>1/2</sup> was quantified at 1.08%. It is worth noting that the lattice parameter underwent a rapid and substantial increase, peaking at 0.2879 nm after 36 h of milling. The SEM analyses revealed the development of diverse morphologies at different milling stages. The elemental maps of Fe and Nb done with EDX experiments confirmed the results found by XRD about the evolution of the alloy formation. The changes in saturation magnetization (<i>M</i><sub>s</sub>), coercive field (<i>H</i><sub>c</sub>), remanent magnetization (<i>M</i><sub>r</sub>) and squareness ratio (<i>M</i><sub>r</sub>/<i>M</i><sub>s</sub>) were investigated in relation to microstructural modifications during the milling process. Annealing Fe<sub>90</sub>Nb<sub>10</sub> (wt%) samples promotes the formation of a homogeneous solid solution and increases coercivity.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-024-03372-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03372-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of Fe90Nb10 via wet mechanical milling method and its structural, magnetic and thermal characterization
This study involves the synthesis of nanocrystalline Fe90Nb10 (wt%) binary powders through the use of a high-energy planetary ball mill within an inert argon environment. The milling process was used to investigate changes in structure, morphology and magnetic properties. This was accomplished through the utilization of techniques such as X-ray diffraction (XRD) using the MAUD program, which is based on the Rietveld method, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and vibrating sample magnetometry. From the XRD analysis, it was observed that a disordered solid solution of αFe(Nb) with a body-centred cubic (bcc) crystal structure formed after 12 h of milling. Interestingly, the analysis also indicated that the average crystallite size 〈D〉 within this αFe(Nb) solid solution was remarkably small, measuring a mere 13.15 nm. Furthermore, the ultimate lattice strain 〈σ2〉1/2 was quantified at 1.08%. It is worth noting that the lattice parameter underwent a rapid and substantial increase, peaking at 0.2879 nm after 36 h of milling. The SEM analyses revealed the development of diverse morphologies at different milling stages. The elemental maps of Fe and Nb done with EDX experiments confirmed the results found by XRD about the evolution of the alloy formation. The changes in saturation magnetization (Ms), coercive field (Hc), remanent magnetization (Mr) and squareness ratio (Mr/Ms) were investigated in relation to microstructural modifications during the milling process. Annealing Fe90Nb10 (wt%) samples promotes the formation of a homogeneous solid solution and increases coercivity.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.