{"title":"分数(k, m)-删除图的尖锐孤立韧性界","authors":"Wei Gao, Wei-fan Wang, Yao-jun Chen","doi":"10.1007/s10255-024-1067-x","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <i>G</i> is a fractional (<i>k, m</i>)-deleted graph if removing any <i>m</i> edges from <i>G</i>, the resulting subgraph still admits a fractional <i>k</i>-factor. Let <i>k</i> ≥ 2 and <i>m</i> ≥ 1 be integers. Denote <span>\\(\\lfloor{2m \\over k}\\rfloor^{\\ast}=\\lfloor{2m \\over k}\\rfloor\\)</span> if <span>\\(2m \\over k\\)</span> is not an integer, and <span>\\(\\lfloor{2m \\over k}\\rfloor^{\\ast}=\\lfloor{2m \\over k}\\rfloor - 1\\)</span> if <span>\\(2m \\over k\\)</span> is an integer. In this paper, we prove that <i>G</i> is a fractional (<i>k, m</i>)-deleted graph if <i>δ</i>(<i>G</i>) ≥ <i>k</i> + <i>m</i> and isolated toughness meets </p><div><div><span>$$I\\left( G \\right) > \\left\\{ {\\matrix{{3 - {1 \\over m},\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,} & {{\\text{if}}\\,k = 2\\,{\\text{and}}\\,m \\ge 3,} \\cr {k + {{{{\\left\\lfloor {{{2m} \\over k}} \\right\\rfloor }^*}} \\over {m + 1 - {{\\left\\lfloor {{{2m} \\over k}} \\right\\rfloor }^*}}},} & {{\\text{otherwise}}.\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,} \\cr } } \\right.$$</span></div></div><p>Furthermore, we show that the isolated toughness bound is tight.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 1","pages":"252 - 269"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Isolated Toughness Bound for Fractional (k, m)-Deleted Graphs\",\"authors\":\"Wei Gao, Wei-fan Wang, Yao-jun Chen\",\"doi\":\"10.1007/s10255-024-1067-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A graph <i>G</i> is a fractional (<i>k, m</i>)-deleted graph if removing any <i>m</i> edges from <i>G</i>, the resulting subgraph still admits a fractional <i>k</i>-factor. Let <i>k</i> ≥ 2 and <i>m</i> ≥ 1 be integers. Denote <span>\\\\(\\\\lfloor{2m \\\\over k}\\\\rfloor^{\\\\ast}=\\\\lfloor{2m \\\\over k}\\\\rfloor\\\\)</span> if <span>\\\\(2m \\\\over k\\\\)</span> is not an integer, and <span>\\\\(\\\\lfloor{2m \\\\over k}\\\\rfloor^{\\\\ast}=\\\\lfloor{2m \\\\over k}\\\\rfloor - 1\\\\)</span> if <span>\\\\(2m \\\\over k\\\\)</span> is an integer. In this paper, we prove that <i>G</i> is a fractional (<i>k, m</i>)-deleted graph if <i>δ</i>(<i>G</i>) ≥ <i>k</i> + <i>m</i> and isolated toughness meets </p><div><div><span>$$I\\\\left( G \\\\right) > \\\\left\\\\{ {\\\\matrix{{3 - {1 \\\\over m},\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,} & {{\\\\text{if}}\\\\,k = 2\\\\,{\\\\text{and}}\\\\,m \\\\ge 3,} \\\\cr {k + {{{{\\\\left\\\\lfloor {{{2m} \\\\over k}} \\\\right\\\\rfloor }^*}} \\\\over {m + 1 - {{\\\\left\\\\lfloor {{{2m} \\\\over k}} \\\\right\\\\rfloor }^*}}},} & {{\\\\text{otherwise}}.\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,} \\\\cr } } \\\\right.$$</span></div></div><p>Furthermore, we show that the isolated toughness bound is tight.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 1\",\"pages\":\"252 - 269\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1067-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1067-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Sharp Isolated Toughness Bound for Fractional (k, m)-Deleted Graphs
A graph G is a fractional (k, m)-deleted graph if removing any m edges from G, the resulting subgraph still admits a fractional k-factor. Let k ≥ 2 and m ≥ 1 be integers. Denote \(\lfloor{2m \over k}\rfloor^{\ast}=\lfloor{2m \over k}\rfloor\) if \(2m \over k\) is not an integer, and \(\lfloor{2m \over k}\rfloor^{\ast}=\lfloor{2m \over k}\rfloor - 1\) if \(2m \over k\) is an integer. In this paper, we prove that G is a fractional (k, m)-deleted graph if δ(G) ≥ k + m and isolated toughness meets
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.