具有非平稳增量的空间各向异性高斯过程的Hausdorff测度

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Jun Wang, Zhen-long Chen, Wei-jie Yuan, Guang-jun Shen
{"title":"具有非平稳增量的空间各向异性高斯过程的Hausdorff测度","authors":"Jun Wang,&nbsp;Zhen-long Chen,&nbsp;Wei-jie Yuan,&nbsp;Guang-jun Shen","doi":"10.1007/s10255-024-1051-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> = {<i>X</i>(<i>t</i>), <i>t</i> ∈ ℝ<sub>+</sub>} be a centered space anisotropic Gaussian process values in ℝ<sup><i>d</i></sup> with non-stationary increments, whose components are independent but may not be identically distributed. Under certain conditions, then almost surely <i>c</i><sub>1</sub> ≤ <i>ϕ</i> − <i>m</i>(<i>X</i>([0, 1])) ≤ <i>c</i><sub>2</sub>, where <i>ϕ</i> denotes the exact Hausdorff measure associated with function <span>\\(\\phi \\left( s \\right) = {s^{{1 \\over {{\\alpha _k}}} + \\sum\\limits_{i = 1}^k {\\left( {1 - {{{\\alpha _i}} \\over {{\\alpha _k}}}} \\right)} }}\\log \\,\\log\\,{1 \\over s}\\)</span> for some 1 ≤ <i>k</i> ≤ <i>d</i>, (<i>α</i><sub>1</sub>,⋯, <i>α</i><sub><i>d</i></sub>) ∈ (0, 1]<sup><i>d</i></sup>. We also obtain the exact Hausdorff measure of the graph of <i>X</i> on [0, 1].</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 1","pages":"114 - 132"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hausdorff Measure of Space Anisotropic Gaussian Processes with Non-stationary Increments\",\"authors\":\"Jun Wang,&nbsp;Zhen-long Chen,&nbsp;Wei-jie Yuan,&nbsp;Guang-jun Shen\",\"doi\":\"10.1007/s10255-024-1051-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>X</i> = {<i>X</i>(<i>t</i>), <i>t</i> ∈ ℝ<sub>+</sub>} be a centered space anisotropic Gaussian process values in ℝ<sup><i>d</i></sup> with non-stationary increments, whose components are independent but may not be identically distributed. Under certain conditions, then almost surely <i>c</i><sub>1</sub> ≤ <i>ϕ</i> − <i>m</i>(<i>X</i>([0, 1])) ≤ <i>c</i><sub>2</sub>, where <i>ϕ</i> denotes the exact Hausdorff measure associated with function <span>\\\\(\\\\phi \\\\left( s \\\\right) = {s^{{1 \\\\over {{\\\\alpha _k}}} + \\\\sum\\\\limits_{i = 1}^k {\\\\left( {1 - {{{\\\\alpha _i}} \\\\over {{\\\\alpha _k}}}} \\\\right)} }}\\\\log \\\\,\\\\log\\\\,{1 \\\\over s}\\\\)</span> for some 1 ≤ <i>k</i> ≤ <i>d</i>, (<i>α</i><sub>1</sub>,⋯, <i>α</i><sub><i>d</i></sub>) ∈ (0, 1]<sup><i>d</i></sup>. We also obtain the exact Hausdorff measure of the graph of <i>X</i> on [0, 1].</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 1\",\"pages\":\"114 - 132\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1051-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1051-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设X = {X(t), t∈λ +}是一个在λ d中具有非平稳增量的中心空间各向异性高斯过程值,其分量是独立的,但可能不是同分布的。在某些条件下,则几乎可以肯定c1≤φ - m(X([0,1]))≤c2,其中φ表示与函数\(\phi \left( s \right) = {s^{{1 \over {{\alpha _k}}} + \sum\limits_{i = 1}^k {\left( {1 - {{{\alpha _i}} \over {{\alpha _k}}}} \right)} }}\log \,\log\,{1 \over s}\)相关的精确Hausdorff测度,对于某些1≤k≤d, (α1,⋯,αd)∈(0,1]d。我们也得到了X在[0,1]上的精确的Hausdorff测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hausdorff Measure of Space Anisotropic Gaussian Processes with Non-stationary Increments

Let X = {X(t), t ∈ ℝ+} be a centered space anisotropic Gaussian process values in ℝd with non-stationary increments, whose components are independent but may not be identically distributed. Under certain conditions, then almost surely c1ϕm(X([0, 1])) ≤ c2, where ϕ denotes the exact Hausdorff measure associated with function \(\phi \left( s \right) = {s^{{1 \over {{\alpha _k}}} + \sum\limits_{i = 1}^k {\left( {1 - {{{\alpha _i}} \over {{\alpha _k}}}} \right)} }}\log \,\log\,{1 \over s}\) for some 1 ≤ kd, (α1,⋯, αd) ∈ (0, 1]d. We also obtain the exact Hausdorff measure of the graph of X on [0, 1].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信