Jiancun Gao, Yunyang Dang, Wei Wang, Naixin Kang, Yujing Li
{"title":"热量热法与量子化学联合评价过氧化氢对n -甲基- n -氧化物热分解的影响","authors":"Jiancun Gao, Yunyang Dang, Wei Wang, Naixin Kang, Yujing Li","doi":"10.1007/s10973-024-13812-2","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) on the thermal decomposition characteristics of <i>N</i>-methylmorpholine-<i>N</i>-oxide (NMMO) was investigated using thermal experiments and quantum chemical calculations. The thermal decomposition characteristics of the NMMO and NMMO/H<sub>2</sub>O<sub>2</sub> systems were determined at different heating rates using a microreaction calorimeter. Firstly, H<sub>2</sub>O<sub>2</sub> decreased the onset temperature and increased the reaction enthalpy of NMMO decomposition. Secondly, the apparent activation energy decreased from 97.49–76.79 kJ mol<sup>−1</sup> to 80.76‒89.87 kJmol<sup>−1</sup> based on the Kissinger and Starink models. Finally, density functional theory was used to investigate the effect of H<sub>2</sub>O<sub>2</sub> on NMMO decomposition from a microscopic perspective. It was found that the length of the N–O bond in NMMO increased, and the ability of oxygen atoms to obtain electrons was enhanced in the presence of H<sub>2</sub>O<sub>2</sub>, decreasing the stability of the NMMO molecules. The nucleophilicity of the oxygen atom in the NMMO molecule was enhanced in the NMMO/ H<sub>2</sub>O<sub>2</sub> system, which is beneficial for electron transfer to the H<sub>2</sub>O<sub>2</sub> molecule. The energy-gap of the frontier molecular orbital decreased under the influence of H<sub>2</sub>O<sub>2</sub>, intensifying the interaction between H<sub>2</sub>O<sub>2</sub> and NMMO to form π bonds. Overall, the stability of the NMMO molecular structure was reduced and the reactivity of NMMO was enhanced at lower temperatures in the presence of H<sub>2</sub>O<sub>2</sub>, which provides a theoretical reference for the safe production of NMMO.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"14865 - 14876"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined thermal calorimetry and quantum chemical evaluation of effect of hydrogen peroxide on the thermal decomposition of N-methylmorpholine-N-oxide\",\"authors\":\"Jiancun Gao, Yunyang Dang, Wei Wang, Naixin Kang, Yujing Li\",\"doi\":\"10.1007/s10973-024-13812-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) on the thermal decomposition characteristics of <i>N</i>-methylmorpholine-<i>N</i>-oxide (NMMO) was investigated using thermal experiments and quantum chemical calculations. The thermal decomposition characteristics of the NMMO and NMMO/H<sub>2</sub>O<sub>2</sub> systems were determined at different heating rates using a microreaction calorimeter. Firstly, H<sub>2</sub>O<sub>2</sub> decreased the onset temperature and increased the reaction enthalpy of NMMO decomposition. Secondly, the apparent activation energy decreased from 97.49–76.79 kJ mol<sup>−1</sup> to 80.76‒89.87 kJmol<sup>−1</sup> based on the Kissinger and Starink models. Finally, density functional theory was used to investigate the effect of H<sub>2</sub>O<sub>2</sub> on NMMO decomposition from a microscopic perspective. It was found that the length of the N–O bond in NMMO increased, and the ability of oxygen atoms to obtain electrons was enhanced in the presence of H<sub>2</sub>O<sub>2</sub>, decreasing the stability of the NMMO molecules. The nucleophilicity of the oxygen atom in the NMMO molecule was enhanced in the NMMO/ H<sub>2</sub>O<sub>2</sub> system, which is beneficial for electron transfer to the H<sub>2</sub>O<sub>2</sub> molecule. The energy-gap of the frontier molecular orbital decreased under the influence of H<sub>2</sub>O<sub>2</sub>, intensifying the interaction between H<sub>2</sub>O<sub>2</sub> and NMMO to form π bonds. Overall, the stability of the NMMO molecular structure was reduced and the reactivity of NMMO was enhanced at lower temperatures in the presence of H<sub>2</sub>O<sub>2</sub>, which provides a theoretical reference for the safe production of NMMO.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 24\",\"pages\":\"14865 - 14876\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13812-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13812-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Combined thermal calorimetry and quantum chemical evaluation of effect of hydrogen peroxide on the thermal decomposition of N-methylmorpholine-N-oxide
The effect of hydrogen peroxide (H2O2) on the thermal decomposition characteristics of N-methylmorpholine-N-oxide (NMMO) was investigated using thermal experiments and quantum chemical calculations. The thermal decomposition characteristics of the NMMO and NMMO/H2O2 systems were determined at different heating rates using a microreaction calorimeter. Firstly, H2O2 decreased the onset temperature and increased the reaction enthalpy of NMMO decomposition. Secondly, the apparent activation energy decreased from 97.49–76.79 kJ mol−1 to 80.76‒89.87 kJmol−1 based on the Kissinger and Starink models. Finally, density functional theory was used to investigate the effect of H2O2 on NMMO decomposition from a microscopic perspective. It was found that the length of the N–O bond in NMMO increased, and the ability of oxygen atoms to obtain electrons was enhanced in the presence of H2O2, decreasing the stability of the NMMO molecules. The nucleophilicity of the oxygen atom in the NMMO molecule was enhanced in the NMMO/ H2O2 system, which is beneficial for electron transfer to the H2O2 molecule. The energy-gap of the frontier molecular orbital decreased under the influence of H2O2, intensifying the interaction between H2O2 and NMMO to form π bonds. Overall, the stability of the NMMO molecular structure was reduced and the reactivity of NMMO was enhanced at lower temperatures in the presence of H2O2, which provides a theoretical reference for the safe production of NMMO.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.