Natália de Paula e Silva, Freddy Armando Franco Grijalba, Paulo Roberto de Aguiar
{"title":"用氧化铝砂轮磨削淬硬AISI 1045钢同时产生的燃烧水平的评估:一种磁巴克豪森噪声测量技术方法","authors":"Natália de Paula e Silva, Freddy Armando Franco Grijalba, Paulo Roberto de Aguiar","doi":"10.1007/s10921-024-01154-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the sensitivity of the Magnetic Barkhausen Noise (MBN) technique in detecting various types and degrees of burning in a single sample, which is similar to what occurs in industrial processes. Using flat grinding with an aluminum oxide wheel on hardened AISI 1045 steel, eight samples with a ground area of 115 mm x 7 mm were created, varying only the ae parameter. In some samples, the effect of generating different levels of burning was observed, starting at one end (grinding wheel entrance) without damage and gradually increasing the damage until the opposite end (grinding wheel exit) with the presence of high levels of burning and the identification of a thick white layer. Results indicated that the MBN<sub>RMS</sub> (root mean square value of the MBN signals) parameter can identify varying burning levels caused by overtempering and rehardening. Burning gradients were clearly detected by MBN and confirmed by metallographic analyses. When the white layer is generated continuously on the surface, the MBN<sub>RMS</sub> parameter adequately tracks the variation in its thickness, varying in an inversely proportional manner.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Simultaneously Generated Burning Levels in Grinding Hardened AISI 1045 Steel Using Aluminum Oxide Grinding Wheel: An Approach of the Magnetic Barkhausen Noise Measurement Technique\",\"authors\":\"Natália de Paula e Silva, Freddy Armando Franco Grijalba, Paulo Roberto de Aguiar\",\"doi\":\"10.1007/s10921-024-01154-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the sensitivity of the Magnetic Barkhausen Noise (MBN) technique in detecting various types and degrees of burning in a single sample, which is similar to what occurs in industrial processes. Using flat grinding with an aluminum oxide wheel on hardened AISI 1045 steel, eight samples with a ground area of 115 mm x 7 mm were created, varying only the ae parameter. In some samples, the effect of generating different levels of burning was observed, starting at one end (grinding wheel entrance) without damage and gradually increasing the damage until the opposite end (grinding wheel exit) with the presence of high levels of burning and the identification of a thick white layer. Results indicated that the MBN<sub>RMS</sub> (root mean square value of the MBN signals) parameter can identify varying burning levels caused by overtempering and rehardening. Burning gradients were clearly detected by MBN and confirmed by metallographic analyses. When the white layer is generated continuously on the surface, the MBN<sub>RMS</sub> parameter adequately tracks the variation in its thickness, varying in an inversely proportional manner.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01154-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01154-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了磁巴克豪森噪声(MBN)技术在检测单个样品中不同类型和程度的燃烧时的灵敏度,这与工业过程中发生的情况类似。用氧化铝砂轮平磨淬硬的AISI 1045钢,产生了8个样品,其地面面积为115 mm x 7 mm,仅改变ae参数。在一些样品中,观察到产生不同程度燃烧的效果,从一端(砂轮入口)开始没有损坏,逐渐增加损坏,直到另一端(砂轮出口)存在高水平燃烧并识别出厚厚的白色层。结果表明,MBNRMS (MBN信号的均方根值)参数能够识别由过回火和再硬化引起的不同燃烧程度。MBN清晰地检测到燃烧梯度,金相分析也证实了这一点。当白层在表面连续产生时,MBNRMS参数充分跟踪了其厚度的变化,呈反比变化。
Assessment of Simultaneously Generated Burning Levels in Grinding Hardened AISI 1045 Steel Using Aluminum Oxide Grinding Wheel: An Approach of the Magnetic Barkhausen Noise Measurement Technique
This study explores the sensitivity of the Magnetic Barkhausen Noise (MBN) technique in detecting various types and degrees of burning in a single sample, which is similar to what occurs in industrial processes. Using flat grinding with an aluminum oxide wheel on hardened AISI 1045 steel, eight samples with a ground area of 115 mm x 7 mm were created, varying only the ae parameter. In some samples, the effect of generating different levels of burning was observed, starting at one end (grinding wheel entrance) without damage and gradually increasing the damage until the opposite end (grinding wheel exit) with the presence of high levels of burning and the identification of a thick white layer. Results indicated that the MBNRMS (root mean square value of the MBN signals) parameter can identify varying burning levels caused by overtempering and rehardening. Burning gradients were clearly detected by MBN and confirmed by metallographic analyses. When the white layer is generated continuously on the surface, the MBNRMS parameter adequately tracks the variation in its thickness, varying in an inversely proportional manner.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.