{"title":"基于U-Net深度学习网络的剪切缺陷尺寸自动准确确定","authors":"Rong Wu, HaiBo Wei, Chao Lu, Yuan Liu","doi":"10.1007/s10921-024-01149-7","DOIUrl":null,"url":null,"abstract":"<div><p>Shearography, an effective non-destructive testing tool, is widely employed for detecting defects in composite materials. It detects internal defects by detecting deformation anomalies, offering advantages such as full-field, non-contact measurement, and high accuracy. Defect size is a critical parameter determining structure performance stability and service life. However, manual inspection is the primary method for defect size measurement in this technique, leading to inefficiency and low accuracy. To address this issue, this study established a defect recognition and high-precision automatic measurement method based on the U-Net deep learning network. First, a high-precision one-time calibration method for all system parameters was developed. Second, U-Net was employed to segment the measured image, identifying defect location and subimage. Finally, defect size was accurately calculated by combining calibration parameters and segmented defect subimage. The proposed method yielded a measurement error of less than 5% and a real-time dynamic detection rate of 14 fps, demonstrating potential for automated quantitative defect detection.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic and Accurate Determination of Defect Size in Shearography Using U-Net Deep Learning Network\",\"authors\":\"Rong Wu, HaiBo Wei, Chao Lu, Yuan Liu\",\"doi\":\"10.1007/s10921-024-01149-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shearography, an effective non-destructive testing tool, is widely employed for detecting defects in composite materials. It detects internal defects by detecting deformation anomalies, offering advantages such as full-field, non-contact measurement, and high accuracy. Defect size is a critical parameter determining structure performance stability and service life. However, manual inspection is the primary method for defect size measurement in this technique, leading to inefficiency and low accuracy. To address this issue, this study established a defect recognition and high-precision automatic measurement method based on the U-Net deep learning network. First, a high-precision one-time calibration method for all system parameters was developed. Second, U-Net was employed to segment the measured image, identifying defect location and subimage. Finally, defect size was accurately calculated by combining calibration parameters and segmented defect subimage. The proposed method yielded a measurement error of less than 5% and a real-time dynamic detection rate of 14 fps, demonstrating potential for automated quantitative defect detection.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01149-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01149-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Automatic and Accurate Determination of Defect Size in Shearography Using U-Net Deep Learning Network
Shearography, an effective non-destructive testing tool, is widely employed for detecting defects in composite materials. It detects internal defects by detecting deformation anomalies, offering advantages such as full-field, non-contact measurement, and high accuracy. Defect size is a critical parameter determining structure performance stability and service life. However, manual inspection is the primary method for defect size measurement in this technique, leading to inefficiency and low accuracy. To address this issue, this study established a defect recognition and high-precision automatic measurement method based on the U-Net deep learning network. First, a high-precision one-time calibration method for all system parameters was developed. Second, U-Net was employed to segment the measured image, identifying defect location and subimage. Finally, defect size was accurately calculated by combining calibration parameters and segmented defect subimage. The proposed method yielded a measurement error of less than 5% and a real-time dynamic detection rate of 14 fps, demonstrating potential for automated quantitative defect detection.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.