Quanli Ji, Ranchao Wu, Federico Frascoli, Zhenzhen Chen
{"title":"具有非局部延迟效应的弱核分布式存储扩散模型动力学","authors":"Quanli Ji, Ranchao Wu, Federico Frascoli, Zhenzhen Chen","doi":"10.1016/j.aml.2024.109442","DOIUrl":null,"url":null,"abstract":"In this paper, we study a temporally distributed memory-based diffusion model with a weak kernel and nonlocal delay effect. Without diffusion, we present results on the stability and Hopf bifurcation of the positive constant steady state. With the inclusion of diffusion, further results on the stability and steady state bifurcation are derived. Finally, these findings are applied to a population model.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"83 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a weak-kernel distributed memory-based diffusion model with nonlocal delay effect\",\"authors\":\"Quanli Ji, Ranchao Wu, Federico Frascoli, Zhenzhen Chen\",\"doi\":\"10.1016/j.aml.2024.109442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a temporally distributed memory-based diffusion model with a weak kernel and nonlocal delay effect. Without diffusion, we present results on the stability and Hopf bifurcation of the positive constant steady state. With the inclusion of diffusion, further results on the stability and steady state bifurcation are derived. Finally, these findings are applied to a population model.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2024.109442\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109442","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dynamics of a weak-kernel distributed memory-based diffusion model with nonlocal delay effect
In this paper, we study a temporally distributed memory-based diffusion model with a weak kernel and nonlocal delay effect. Without diffusion, we present results on the stability and Hopf bifurcation of the positive constant steady state. With the inclusion of diffusion, further results on the stability and steady state bifurcation are derived. Finally, these findings are applied to a population model.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.