基于机器学习模拟的银汞石固体电解质中阴离子对锂的定位(能源材料,48/2024)

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hyun-Jae Lee, Hyeonjung Kim, Sungyoung Ji, Kyuri Choi, Ho Choi, Woosang Lim, Byungju Lee
{"title":"基于机器学习模拟的银汞石固体电解质中阴离子对锂的定位(能源材料,48/2024)","authors":"Hyun-Jae Lee,&nbsp;Hyeonjung Kim,&nbsp;Sungyoung Ji,&nbsp;Kyuri Choi,&nbsp;Ho Choi,&nbsp;Woosang Lim,&nbsp;Byungju Lee","doi":"10.1002/aenm.202470217","DOIUrl":null,"url":null,"abstract":"<p><b>Solid Electrolytes</b></p><p>In article number 2402396, Byungju Lee and co-workers employ artificial intelligence (AI) to investigate lithium-ion transport within solid electrolytes using large-scale molecular dynamics simulations. By integrating AI-driven insights, it provides a detailed understanding of ion dynamics, aiming to enhance the performance of lithium-ion batteries and guide the development of next-generation solid-state energy storage systems. This approach offers a novel pathway for optimizing battery efficiency.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"14 48","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202470217","citationCount":"0","resultStr":"{\"title\":\"Lithium Localization by Anions in Argyrodite Solid Electrolytes from Machine-Learning-based Simulations (Adv. Energy Mater. 48/2024)\",\"authors\":\"Hyun-Jae Lee,&nbsp;Hyeonjung Kim,&nbsp;Sungyoung Ji,&nbsp;Kyuri Choi,&nbsp;Ho Choi,&nbsp;Woosang Lim,&nbsp;Byungju Lee\",\"doi\":\"10.1002/aenm.202470217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Solid Electrolytes</b></p><p>In article number 2402396, Byungju Lee and co-workers employ artificial intelligence (AI) to investigate lithium-ion transport within solid electrolytes using large-scale molecular dynamics simulations. By integrating AI-driven insights, it provides a detailed understanding of ion dynamics, aiming to enhance the performance of lithium-ion batteries and guide the development of next-generation solid-state energy storage systems. This approach offers a novel pathway for optimizing battery efficiency.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"14 48\",\"pages\":\"\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202470217\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202470217\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202470217","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固体电解质
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lithium Localization by Anions in Argyrodite Solid Electrolytes from Machine-Learning-based Simulations (Adv. Energy Mater. 48/2024)

Lithium Localization by Anions in Argyrodite Solid Electrolytes from Machine-Learning-based Simulations (Adv. Energy Mater. 48/2024)

Lithium Localization by Anions in Argyrodite Solid Electrolytes from Machine-Learning-based Simulations (Adv. Energy Mater. 48/2024)

Solid Electrolytes

In article number 2402396, Byungju Lee and co-workers employ artificial intelligence (AI) to investigate lithium-ion transport within solid electrolytes using large-scale molecular dynamics simulations. By integrating AI-driven insights, it provides a detailed understanding of ion dynamics, aiming to enhance the performance of lithium-ion batteries and guide the development of next-generation solid-state energy storage systems. This approach offers a novel pathway for optimizing battery efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信