Saiphaneendra Bachu, Fatimah Habis, Benjamin Huet, Steffi Y. Woo, Leixin Miao, Danielle Reifsnyder Hickey, Gwangwoo Kim, Nicholas Trainor, Kenji Watanabe, Takashi Taniguchi, Deep Jariwala, Joan M. Redwing, Yuanxi Wang, Mathieu Kociak, Luiz H. G. Tizei, Nasim Alem
{"title":"二维量子受限发光","authors":"Saiphaneendra Bachu, Fatimah Habis, Benjamin Huet, Steffi Y. Woo, Leixin Miao, Danielle Reifsnyder Hickey, Gwangwoo Kim, Nicholas Trainor, Kenji Watanabe, Takashi Taniguchi, Deep Jariwala, Joan M. Redwing, Yuanxi Wang, Mathieu Kociak, Luiz H. G. Tizei, Nasim Alem","doi":"10.1021/acsphotonics.4c01739","DOIUrl":null,"url":null,"abstract":"Achieving localized light emission from monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) embedded in the matrix of another TMD has been theoretically proposed but not experimentally proven. In this study, we used cathodoluminescence performed in a scanning transmission electron microscope to unambiguously resolve localized light emission from 2D monolayer MoSe<sub>2</sub> nanodots of varying sizes embedded in a monolayer WSe<sub>2</sub> matrix. We observed that the light emission strongly depends on the nanodot size, wherein the emission is dominated by MoSe<sub>2</sub> excitons in dots larger than 85 nm and by MoSe<sub>2</sub>/WSe<sub>2</sub> interface excitons below 50 nm. Interestingly, at extremely small dot sizes (<10 nm), the electron energy levels in the nanodot become quantized, as demonstrated by a striking blue-shift in interface exciton emission, thus inducing quantum confined luminescence. These results establish controllable light emission from spatially confined 2D nanodots, which holds potential to be generalized to other 2D systems toward future nanophotonic applications.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"4 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Confined Luminescence in Two Dimensions\",\"authors\":\"Saiphaneendra Bachu, Fatimah Habis, Benjamin Huet, Steffi Y. Woo, Leixin Miao, Danielle Reifsnyder Hickey, Gwangwoo Kim, Nicholas Trainor, Kenji Watanabe, Takashi Taniguchi, Deep Jariwala, Joan M. Redwing, Yuanxi Wang, Mathieu Kociak, Luiz H. G. Tizei, Nasim Alem\",\"doi\":\"10.1021/acsphotonics.4c01739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving localized light emission from monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) embedded in the matrix of another TMD has been theoretically proposed but not experimentally proven. In this study, we used cathodoluminescence performed in a scanning transmission electron microscope to unambiguously resolve localized light emission from 2D monolayer MoSe<sub>2</sub> nanodots of varying sizes embedded in a monolayer WSe<sub>2</sub> matrix. We observed that the light emission strongly depends on the nanodot size, wherein the emission is dominated by MoSe<sub>2</sub> excitons in dots larger than 85 nm and by MoSe<sub>2</sub>/WSe<sub>2</sub> interface excitons below 50 nm. Interestingly, at extremely small dot sizes (<10 nm), the electron energy levels in the nanodot become quantized, as demonstrated by a striking blue-shift in interface exciton emission, thus inducing quantum confined luminescence. These results establish controllable light emission from spatially confined 2D nanodots, which holds potential to be generalized to other 2D systems toward future nanophotonic applications.\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c01739\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01739","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Achieving localized light emission from monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) embedded in the matrix of another TMD has been theoretically proposed but not experimentally proven. In this study, we used cathodoluminescence performed in a scanning transmission electron microscope to unambiguously resolve localized light emission from 2D monolayer MoSe2 nanodots of varying sizes embedded in a monolayer WSe2 matrix. We observed that the light emission strongly depends on the nanodot size, wherein the emission is dominated by MoSe2 excitons in dots larger than 85 nm and by MoSe2/WSe2 interface excitons below 50 nm. Interestingly, at extremely small dot sizes (<10 nm), the electron energy levels in the nanodot become quantized, as demonstrated by a striking blue-shift in interface exciton emission, thus inducing quantum confined luminescence. These results establish controllable light emission from spatially confined 2D nanodots, which holds potential to be generalized to other 2D systems toward future nanophotonic applications.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.