气相辅助原位合成Nb2CTxNS/NbO2F MXene异质结构以增强太阳能驱动的光电化学性能

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Ying-Chih Pu, Yi-Chen Yu, Jen-An Shih, Yi-Li Chen, I-Wen Peter Chen
{"title":"气相辅助原位合成Nb2CTxNS/NbO2F MXene异质结构以增强太阳能驱动的光电化学性能","authors":"Ying-Chih Pu, Yi-Chen Yu, Jen-An Shih, Yi-Li Chen, I-Wen Peter Chen","doi":"10.1021/acs.jpclett.4c02684","DOIUrl":null,"url":null,"abstract":"Photocatalytic water splitting holds great potential for transforming solar energy into valuable chemical products. However, obstacles such as the rapid recombination of electron–hole pairs and insufficiently active surface areas of photocatalysts remain significant challenges. In this study, we present the first demonstration that lithium bis(trifluoromethanesulfonyl)imide vapor successfully etches aluminum from Nb<sub>2</sub>AlC MAX phase powders while concurrently forming NbO<sub>2</sub>F anchors on Nb<sub>2</sub>CT<i><sub>x</sub></i> nanosheet (Nb<sub>2</sub>CT<i><sub>x</sub></i>NS) MXene, leading to the in situ formation of a Nb<sub>2</sub>CT<i><sub>x</sub></i>NS/NbO<sub>2</sub>F heterostructure composite. This novel material exhibits a remarkable photoelectrochemical performance, achieving a current density of 252 μA cm<sup>–2</sup>, which is 1000 and 10 times greater than those of Nb<sub>2</sub>AlC MAX and Nb<sub>2</sub>C nanosheet MXene, respectively. These findings shed light on innovative approaches for developing photocatalytic materials via vapor-assisted synthesis, offering a promising pathway for advancing material discovery in both photo- and energy-related fields.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"32 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vapor-Assisted In Situ Synthesis of the Nb2CTxNS/NbO2F MXene Heterostructure for Enhanced Solar-Driven Photoelectrochemical Performance\",\"authors\":\"Ying-Chih Pu, Yi-Chen Yu, Jen-An Shih, Yi-Li Chen, I-Wen Peter Chen\",\"doi\":\"10.1021/acs.jpclett.4c02684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalytic water splitting holds great potential for transforming solar energy into valuable chemical products. However, obstacles such as the rapid recombination of electron–hole pairs and insufficiently active surface areas of photocatalysts remain significant challenges. In this study, we present the first demonstration that lithium bis(trifluoromethanesulfonyl)imide vapor successfully etches aluminum from Nb<sub>2</sub>AlC MAX phase powders while concurrently forming NbO<sub>2</sub>F anchors on Nb<sub>2</sub>CT<i><sub>x</sub></i> nanosheet (Nb<sub>2</sub>CT<i><sub>x</sub></i>NS) MXene, leading to the in situ formation of a Nb<sub>2</sub>CT<i><sub>x</sub></i>NS/NbO<sub>2</sub>F heterostructure composite. This novel material exhibits a remarkable photoelectrochemical performance, achieving a current density of 252 μA cm<sup>–2</sup>, which is 1000 and 10 times greater than those of Nb<sub>2</sub>AlC MAX and Nb<sub>2</sub>C nanosheet MXene, respectively. These findings shed light on innovative approaches for developing photocatalytic materials via vapor-assisted synthesis, offering a promising pathway for advancing material discovery in both photo- and energy-related fields.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c02684\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02684","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化水分解在将太阳能转化为有价值的化学产品方面具有巨大的潜力。然而,诸如电子-空穴对的快速重组和光催化剂的活性表面积不足等障碍仍然是重大的挑战。在这项研究中,我们首次证明了锂二(三氟甲烷磺酰)亚胺蒸气成功地蚀刻Nb2AlC MAX相粉末中的铝,同时在Nb2CTx纳米片(Nb2CTxNS) MXene上形成NbO2F锚点,导致Nb2CTxNS/NbO2F异质结构复合材料的原位形成。该材料具有优异的光电化学性能,电流密度达到252 μA cm-2,分别是Nb2AlC MAX和Nb2C纳米片MXene的1000倍和10倍。这些发现揭示了通过蒸汽辅助合成开发光催化材料的创新方法,为推进光和能源相关领域的材料发现提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vapor-Assisted In Situ Synthesis of the Nb2CTxNS/NbO2F MXene Heterostructure for Enhanced Solar-Driven Photoelectrochemical Performance

Vapor-Assisted In Situ Synthesis of the Nb2CTxNS/NbO2F MXene Heterostructure for Enhanced Solar-Driven Photoelectrochemical Performance
Photocatalytic water splitting holds great potential for transforming solar energy into valuable chemical products. However, obstacles such as the rapid recombination of electron–hole pairs and insufficiently active surface areas of photocatalysts remain significant challenges. In this study, we present the first demonstration that lithium bis(trifluoromethanesulfonyl)imide vapor successfully etches aluminum from Nb2AlC MAX phase powders while concurrently forming NbO2F anchors on Nb2CTx nanosheet (Nb2CTxNS) MXene, leading to the in situ formation of a Nb2CTxNS/NbO2F heterostructure composite. This novel material exhibits a remarkable photoelectrochemical performance, achieving a current density of 252 μA cm–2, which is 1000 and 10 times greater than those of Nb2AlC MAX and Nb2C nanosheet MXene, respectively. These findings shed light on innovative approaches for developing photocatalytic materials via vapor-assisted synthesis, offering a promising pathway for advancing material discovery in both photo- and energy-related fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信