微泡增溶模式下的高效催化臭氧氧化消除气体异味:加速界面AgOMn桥上的电子转移和循环

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Su Tang , Xianhu Long , Wei Qu , Fan Huang , Zhangnan Yao , Tao Zhong , Huinan Zhao , Shuanghong Tian , Dong Shu , Chun He
{"title":"微泡增溶模式下的高效催化臭氧氧化消除气体异味:加速界面AgOMn桥上的电子转移和循环","authors":"Su Tang ,&nbsp;Xianhu Long ,&nbsp;Wei Qu ,&nbsp;Fan Huang ,&nbsp;Zhangnan Yao ,&nbsp;Tao Zhong ,&nbsp;Huinan Zhao ,&nbsp;Shuanghong Tian ,&nbsp;Dong Shu ,&nbsp;Chun He","doi":"10.1016/j.seppur.2024.131362","DOIUrl":null,"url":null,"abstract":"<div><div>A pioneering approach for eliminating malodorous gas using an ozone (O<sub>3</sub>) microbubble system is introduced. Utilizing the mass transfer characteristics of larger interfacial area and longer bubble residence time, microbubbles achieve a superior solubilization effect in the liquid-phase O<sub>3</sub> process. Mathematical calculations reveal that the diffusion coefficient of O<sub>3</sub> microbubbles is 1.99 times that of conventional bubbles. By adjusting the pH value, electrostatic adsorption of O<sub>3</sub> microbubbles on catalyst surface is further promoted, thereby amplifying the catalytic ozonation ability. Additionally, MnO<sub>2</sub> catalysts with dispersed Ag nanoparticles (Ag/MnO<sub>2</sub>) are designed to synergistically enhance the electron transfer in catalytic reaction through electronic metal-support interaction effect. Experimental calculations demonstrate that the (Ag-)O-Mn region in Ag/MnO<sub>2</sub> utilizes electron-rich properties to decompose and activate O<sub>3</sub>, facilitating the conversion into abundant <sup><img></sup>OH, <sup><img></sup>O<sub>2</sub><sup>–</sup> and <sup>1</sup>O<sub>2</sub>. Meanwhile, the electron-poor Ag<img>O(<img>Mn) region adsorbs and immobilizes CH<sub>3</sub>SH, which is deeply mineralized by reactive oxygen species. This underscores the essentiality of exploiting microbubble properties to construct a liquid-phase O<sub>3</sub> catalytic process with high mass transfer, offering a new perspective for the purification and treatment of malodorous waste gas.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"361 ","pages":"Article 131362"},"PeriodicalIF":9.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient catalytic ozonation in microbubbles solubilization mode to eliminate gas odor: Accelerated electron transfer and cycling at interfacial AgOMn bridge\",\"authors\":\"Su Tang ,&nbsp;Xianhu Long ,&nbsp;Wei Qu ,&nbsp;Fan Huang ,&nbsp;Zhangnan Yao ,&nbsp;Tao Zhong ,&nbsp;Huinan Zhao ,&nbsp;Shuanghong Tian ,&nbsp;Dong Shu ,&nbsp;Chun He\",\"doi\":\"10.1016/j.seppur.2024.131362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A pioneering approach for eliminating malodorous gas using an ozone (O<sub>3</sub>) microbubble system is introduced. Utilizing the mass transfer characteristics of larger interfacial area and longer bubble residence time, microbubbles achieve a superior solubilization effect in the liquid-phase O<sub>3</sub> process. Mathematical calculations reveal that the diffusion coefficient of O<sub>3</sub> microbubbles is 1.99 times that of conventional bubbles. By adjusting the pH value, electrostatic adsorption of O<sub>3</sub> microbubbles on catalyst surface is further promoted, thereby amplifying the catalytic ozonation ability. Additionally, MnO<sub>2</sub> catalysts with dispersed Ag nanoparticles (Ag/MnO<sub>2</sub>) are designed to synergistically enhance the electron transfer in catalytic reaction through electronic metal-support interaction effect. Experimental calculations demonstrate that the (Ag-)O-Mn region in Ag/MnO<sub>2</sub> utilizes electron-rich properties to decompose and activate O<sub>3</sub>, facilitating the conversion into abundant <sup><img></sup>OH, <sup><img></sup>O<sub>2</sub><sup>–</sup> and <sup>1</sup>O<sub>2</sub>. Meanwhile, the electron-poor Ag<img>O(<img>Mn) region adsorbs and immobilizes CH<sub>3</sub>SH, which is deeply mineralized by reactive oxygen species. This underscores the essentiality of exploiting microbubble properties to construct a liquid-phase O<sub>3</sub> catalytic process with high mass transfer, offering a new perspective for the purification and treatment of malodorous waste gas.</div></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"361 \",\"pages\":\"Article 131362\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383586624051013\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586624051013","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种利用臭氧(O3)微泡系统消除恶臭气体的开创性方法。微气泡利用更大的界面面积和更长的气泡停留时间的传质特性,在液相O3过程中取得了优异的增溶效果。数学计算表明,O3微气泡的扩散系数是常规气泡的1.99倍。通过调节pH值,进一步促进催化剂表面O3微泡的静电吸附,从而增强催化臭氧化能力。此外,设计了具有分散银纳米粒子(Ag/MnO2)的MnO2催化剂,通过电子金属-载体相互作用效应协同促进催化反应中的电子转移。实验计算表明,Ag/MnO2中的(Ag-)O-Mn区利用富电子的性质分解和活化O3,促进转化为丰富的OH、O2 -和1O2。同时,贫电子AgO(Mn)区吸附并固定化CH3SH, CH3SH被活性氧深度矿化。这凸显了利用微泡特性构建高传质液相O3催化工艺的重要性,为恶臭废气的净化和处理提供了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly efficient catalytic ozonation in microbubbles solubilization mode to eliminate gas odor: Accelerated electron transfer and cycling at interfacial AgOMn bridge
A pioneering approach for eliminating malodorous gas using an ozone (O3) microbubble system is introduced. Utilizing the mass transfer characteristics of larger interfacial area and longer bubble residence time, microbubbles achieve a superior solubilization effect in the liquid-phase O3 process. Mathematical calculations reveal that the diffusion coefficient of O3 microbubbles is 1.99 times that of conventional bubbles. By adjusting the pH value, electrostatic adsorption of O3 microbubbles on catalyst surface is further promoted, thereby amplifying the catalytic ozonation ability. Additionally, MnO2 catalysts with dispersed Ag nanoparticles (Ag/MnO2) are designed to synergistically enhance the electron transfer in catalytic reaction through electronic metal-support interaction effect. Experimental calculations demonstrate that the (Ag-)O-Mn region in Ag/MnO2 utilizes electron-rich properties to decompose and activate O3, facilitating the conversion into abundant OH, O2 and 1O2. Meanwhile, the electron-poor AgO(Mn) region adsorbs and immobilizes CH3SH, which is deeply mineralized by reactive oxygen species. This underscores the essentiality of exploiting microbubble properties to construct a liquid-phase O3 catalytic process with high mass transfer, offering a new perspective for the purification and treatment of malodorous waste gas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信