Abhijit Chakraborty, Carlos R Ordóñez and Gustavo Valdivia-Mera
{"title":"因果金刚石热场双态的路径积分推导","authors":"Abhijit Chakraborty, Carlos R Ordóñez and Gustavo Valdivia-Mera","doi":"10.1088/1361-6382/ad9e65","DOIUrl":null,"url":null,"abstract":"In this article, we adopt the framework developed by Laflamme (1989 Physica A 158 58–63) to analyze the path integral of a massless—conformally invariant—scalar field defined on a causal diamond (CD) of size 2α in 1+1 dimensions. By examining the Euclidean geometry of the CD, we establish that its structure is conformally related to the cylinder , where the Euclidean time coordinate τ has a periodicity of β. This property, along with the conformal symmetry of the fields, allows us to identify the connection between the thermofield double (TFD) state of CDs and the Euclidean path integral defined on the two disconnected manifolds of the cylinder. Furthermore, we demonstrate that the temperature of the TFD state, derived from the conditions in the Euclidean geometry and analytically calculated, coincides with the temperature of the CD known in the literature. This derivation highlights the universality of the connection between the Euclidean path integral formalism and the TFD state of the CD, as well as it further establishes CDs as a model that exhibits all desired properties of a system exhibiting the Unruh effect.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"72 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path integral derivation of the thermofield double state in causal diamonds\",\"authors\":\"Abhijit Chakraborty, Carlos R Ordóñez and Gustavo Valdivia-Mera\",\"doi\":\"10.1088/1361-6382/ad9e65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we adopt the framework developed by Laflamme (1989 Physica A 158 58–63) to analyze the path integral of a massless—conformally invariant—scalar field defined on a causal diamond (CD) of size 2α in 1+1 dimensions. By examining the Euclidean geometry of the CD, we establish that its structure is conformally related to the cylinder , where the Euclidean time coordinate τ has a periodicity of β. This property, along with the conformal symmetry of the fields, allows us to identify the connection between the thermofield double (TFD) state of CDs and the Euclidean path integral defined on the two disconnected manifolds of the cylinder. Furthermore, we demonstrate that the temperature of the TFD state, derived from the conditions in the Euclidean geometry and analytically calculated, coincides with the temperature of the CD known in the literature. This derivation highlights the universality of the connection between the Euclidean path integral formalism and the TFD state of the CD, as well as it further establishes CDs as a model that exhibits all desired properties of a system exhibiting the Unruh effect.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ad9e65\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad9e65","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们采用Laflamme (1989 physics A 158 58-63)开发的框架,分析了定义在尺寸为2α的1+1维因果菱形(CD)上的无质量共形不变标量场的路径积分。通过检查CD的欧几里得几何,我们建立了其结构与圆柱体的保形相关,其中欧几里得时间坐标τ具有周期性β。这一性质,加上场的共形对称性,使我们能够确定CDs的热场双态(TFD)和在圆柱体的两个不相连流形上定义的欧几里得路径积分之间的联系。此外,我们证明了从欧几里得几何条件和解析计算得出的TFD状态的温度与文献中已知的CD温度一致。这个推导强调了欧几里得路径积分形式和CD的TFD状态之间的联系的普遍性,并且它进一步建立了CD作为一个模型,该模型显示了一个系统显示Unruh效应的所有期望属性。
Path integral derivation of the thermofield double state in causal diamonds
In this article, we adopt the framework developed by Laflamme (1989 Physica A 158 58–63) to analyze the path integral of a massless—conformally invariant—scalar field defined on a causal diamond (CD) of size 2α in 1+1 dimensions. By examining the Euclidean geometry of the CD, we establish that its structure is conformally related to the cylinder , where the Euclidean time coordinate τ has a periodicity of β. This property, along with the conformal symmetry of the fields, allows us to identify the connection between the thermofield double (TFD) state of CDs and the Euclidean path integral defined on the two disconnected manifolds of the cylinder. Furthermore, we demonstrate that the temperature of the TFD state, derived from the conditions in the Euclidean geometry and analytically calculated, coincides with the temperature of the CD known in the literature. This derivation highlights the universality of the connection between the Euclidean path integral formalism and the TFD state of the CD, as well as it further establishes CDs as a model that exhibits all desired properties of a system exhibiting the Unruh effect.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.