Shuang Wang, Yan Shi, Tao Shen, Guangzhe Wang, Yue Sun, Gongwei Wang, Li Xiao, Changfeng Yan, Chundong Wang, Hongfang Liu, Ying Wang, Honggang Liao, Lin Zhuang, Deli Wang
{"title":"在Ir - Mn金属间化合物上强杂原子键诱导的受限重构使PEM水电解槽坚固耐用","authors":"Shuang Wang, Yan Shi, Tao Shen, Guangzhe Wang, Yue Sun, Gongwei Wang, Li Xiao, Changfeng Yan, Chundong Wang, Hongfang Liu, Ying Wang, Honggang Liao, Lin Zhuang, Deli Wang","doi":"10.1002/anie.202420470","DOIUrl":null,"url":null,"abstract":"Low‐iridium acid‐stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir‐based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade‐off. Under working conditions, the strong heteroatom‐bonded structure triggers rational surface‐confined reconstruction to form self‐stabilizing amorphous (oxy)hydroxides on the model Ir‐Mn intermetallic (IMC). Combined in‐situ/ex‐situ characterizations and theoretical analysis demonstrate that the induced strong covalent Ir‐O‐Mn units in the catalytic layer weaken the formation barrier of OOH* and promote the preferential dynamic replenishment/conversion pathway of H2O molecules to suppress the uncontrollable participation of lattice oxygen (about 2.6 times lower than that of pure Ir). Thus, a PEM cell with Ir‐Mn IMC as anode “pre‐electrocatalyst” (0.24 mgIr cm−2) delivers an impressive performance (3.0 A cm−2@1.851 V@80 °C) and runs stably at 2.0 A cm−2 for more than 2,000 h with the cost of USD 0.98 per kg H2, further validating its promising application. This work highlights surface‐confined evolution triggered by strong heteroatom bonds, providing insights into the design of catalysts involving surface reconstruction.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"148 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Heteroatomic Bond‐Induced Confined Restructuring on Ir‐Mn Intermetallics Enable Robust PEM Water Electrolyzers\",\"authors\":\"Shuang Wang, Yan Shi, Tao Shen, Guangzhe Wang, Yue Sun, Gongwei Wang, Li Xiao, Changfeng Yan, Chundong Wang, Hongfang Liu, Ying Wang, Honggang Liao, Lin Zhuang, Deli Wang\",\"doi\":\"10.1002/anie.202420470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low‐iridium acid‐stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir‐based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade‐off. Under working conditions, the strong heteroatom‐bonded structure triggers rational surface‐confined reconstruction to form self‐stabilizing amorphous (oxy)hydroxides on the model Ir‐Mn intermetallic (IMC). Combined in‐situ/ex‐situ characterizations and theoretical analysis demonstrate that the induced strong covalent Ir‐O‐Mn units in the catalytic layer weaken the formation barrier of OOH* and promote the preferential dynamic replenishment/conversion pathway of H2O molecules to suppress the uncontrollable participation of lattice oxygen (about 2.6 times lower than that of pure Ir). Thus, a PEM cell with Ir‐Mn IMC as anode “pre‐electrocatalyst” (0.24 mgIr cm−2) delivers an impressive performance (3.0 A cm−2@1.851 V@80 °C) and runs stably at 2.0 A cm−2 for more than 2,000 h with the cost of USD 0.98 per kg H2, further validating its promising application. This work highlights surface‐confined evolution triggered by strong heteroatom bonds, providing insights into the design of catalysts involving surface reconstruction.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202420470\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420470","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
用于高效析氧反应(OER)的低铱酸稳定电催化剂对于质子交换膜(PEM)电解的市场部署至关重要。利用有利的动力学操纵原位重建Ir基催化剂是非常可取的,但仍然难以捉摸。在此,我们提出了一种原子排序策略来调节催化剂的动态表面重组,以打破活性/稳定性的权衡。在工作条件下,强杂原子键合结构触发合理的表面约束重建,在模型Ir - Mn金属间化合物(IMC)上形成自稳定的无定形(氧)氢氧化物。结合原位/非原位表征和理论分析表明,在催化层中诱导的强共价Ir - O - Mn单元削弱了OOH*的形成屏障,促进了H2O分子的优先动态补充/转化途径,从而抑制了晶格氧的不可控参与(比纯Ir低约2.6倍)。因此,以Ir - Mn IMC作为阳极“预电催化剂”(0.24 mgIr cm - 2)的PEM电池具有令人印象深刻的性能(3.0 a cm - 2@1.851 V@80°C),并且在2.0 a cm - 2下稳定运行超过2,000小时,成本为每千克H2 0.98美元,进一步验证了其有前景的应用。这项工作强调了由强杂原子键引发的表面限制演化,为涉及表面重建的催化剂的设计提供了见解。
Strong Heteroatomic Bond‐Induced Confined Restructuring on Ir‐Mn Intermetallics Enable Robust PEM Water Electrolyzers
Low‐iridium acid‐stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir‐based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade‐off. Under working conditions, the strong heteroatom‐bonded structure triggers rational surface‐confined reconstruction to form self‐stabilizing amorphous (oxy)hydroxides on the model Ir‐Mn intermetallic (IMC). Combined in‐situ/ex‐situ characterizations and theoretical analysis demonstrate that the induced strong covalent Ir‐O‐Mn units in the catalytic layer weaken the formation barrier of OOH* and promote the preferential dynamic replenishment/conversion pathway of H2O molecules to suppress the uncontrollable participation of lattice oxygen (about 2.6 times lower than that of pure Ir). Thus, a PEM cell with Ir‐Mn IMC as anode “pre‐electrocatalyst” (0.24 mgIr cm−2) delivers an impressive performance (3.0 A cm−2@1.851 V@80 °C) and runs stably at 2.0 A cm−2 for more than 2,000 h with the cost of USD 0.98 per kg H2, further validating its promising application. This work highlights surface‐confined evolution triggered by strong heteroatom bonds, providing insights into the design of catalysts involving surface reconstruction.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.