用蜂窝状共价有机框架调控锌沉积制备稳定的锌金属阳极

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pan He, Boxin Li, Bingwu Wang, Dong Xie, Ke Wang, Wei Ai
{"title":"用蜂窝状共价有机框架调控锌沉积制备稳定的锌金属阳极","authors":"Pan He, Boxin Li, Bingwu Wang, Dong Xie, Ke Wang, Wei Ai","doi":"10.1021/acsami.4c17415","DOIUrl":null,"url":null,"abstract":"The irreversible chemistry of the Zn anode, attributed to parasitic reactions and the growth of zinc dendrites, is the bottleneck in the commercialization of aqueous zinc-ion batteries. Herein, an efficient strategy via constructing an organic protective layer configured with a honeycomb-like globular-covalent organic framework (G-COF) was constructed to enhance the interfacial stability of Zn anodes. Theoretical analyses disclose that the methoxy and imine groups in G-COF have more negative adsorption energy and electrostatic potential distribution, favorable Zn<sup>2+</sup> adsorption, and diffusion. Experimental results demonstrate that G-COF effectively protects the Zn anode from dendrite formation and surface corrosion, leading to a stable and homogeneous Zn<sup>2+</sup> deposition. Notably, the G-COF@Zn||G-COF@Zn symmetric cell obtained high stability for over 1650 h under 3 mA cm<sup>–2</sup> for 1 mA h cm<sup>–2</sup>. Full cells assembled with the δ-MnO<sub>2</sub> cathode and G-COF@Zn anode demonstrates exceptional rate capability and consistent cycling over 1000 cycles at a current density of 1 A g<sup>–1</sup>, achieving a specific capacity of 217 mA h g<sup>–1</sup>. Our work provides novel insight into interfacial regulation of Zn anodes for the implementation of practical aqueous zinc-ion batteries with long-term cycling characteristics.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"150 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating Zn Deposition via Honeycomb-like Covalent Organic Frameworks for Stable Zn Metal Anodes\",\"authors\":\"Pan He, Boxin Li, Bingwu Wang, Dong Xie, Ke Wang, Wei Ai\",\"doi\":\"10.1021/acsami.4c17415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The irreversible chemistry of the Zn anode, attributed to parasitic reactions and the growth of zinc dendrites, is the bottleneck in the commercialization of aqueous zinc-ion batteries. Herein, an efficient strategy via constructing an organic protective layer configured with a honeycomb-like globular-covalent organic framework (G-COF) was constructed to enhance the interfacial stability of Zn anodes. Theoretical analyses disclose that the methoxy and imine groups in G-COF have more negative adsorption energy and electrostatic potential distribution, favorable Zn<sup>2+</sup> adsorption, and diffusion. Experimental results demonstrate that G-COF effectively protects the Zn anode from dendrite formation and surface corrosion, leading to a stable and homogeneous Zn<sup>2+</sup> deposition. Notably, the G-COF@Zn||G-COF@Zn symmetric cell obtained high stability for over 1650 h under 3 mA cm<sup>–2</sup> for 1 mA h cm<sup>–2</sup>. Full cells assembled with the δ-MnO<sub>2</sub> cathode and G-COF@Zn anode demonstrates exceptional rate capability and consistent cycling over 1000 cycles at a current density of 1 A g<sup>–1</sup>, achieving a specific capacity of 217 mA h g<sup>–1</sup>. Our work provides novel insight into interfacial regulation of Zn anodes for the implementation of practical aqueous zinc-ion batteries with long-term cycling characteristics.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c17415\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17415","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于寄生反应和锌枝晶的生长,锌阳极的不可逆化学反应是水锌离子电池商业化的瓶颈。本文通过构建具有蜂窝状球状共价有机骨架(G-COF)的有机保护层来提高锌阳极的界面稳定性。理论分析表明,G-COF中的甲氧基和亚胺基具有更多的负吸附能和静电势分布,有利于Zn2+的吸附和扩散。实验结果表明,G-COF有效地防止了Zn阳极枝晶的形成和表面腐蚀,导致Zn2+沉积稳定均匀。值得注意的是,G-COF@Zn||G-COF@Zn对称电池在3 mA cm-2条件下,在1 mA h cm-2条件下获得了超过1650小时的高稳定性。由δ-MnO2阴极和G-COF@Zn阳极组装的完整电池具有出色的倍率能力,并且在电流密度为1 a g-1的情况下连续循环超过1000次,达到217 mA h g-1的比容量。我们的工作为实现具有长期循环特性的实用水性锌离子电池提供了锌阳极界面调节的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regulating Zn Deposition via Honeycomb-like Covalent Organic Frameworks for Stable Zn Metal Anodes

Regulating Zn Deposition via Honeycomb-like Covalent Organic Frameworks for Stable Zn Metal Anodes
The irreversible chemistry of the Zn anode, attributed to parasitic reactions and the growth of zinc dendrites, is the bottleneck in the commercialization of aqueous zinc-ion batteries. Herein, an efficient strategy via constructing an organic protective layer configured with a honeycomb-like globular-covalent organic framework (G-COF) was constructed to enhance the interfacial stability of Zn anodes. Theoretical analyses disclose that the methoxy and imine groups in G-COF have more negative adsorption energy and electrostatic potential distribution, favorable Zn2+ adsorption, and diffusion. Experimental results demonstrate that G-COF effectively protects the Zn anode from dendrite formation and surface corrosion, leading to a stable and homogeneous Zn2+ deposition. Notably, the G-COF@Zn||G-COF@Zn symmetric cell obtained high stability for over 1650 h under 3 mA cm–2 for 1 mA h cm–2. Full cells assembled with the δ-MnO2 cathode and G-COF@Zn anode demonstrates exceptional rate capability and consistent cycling over 1000 cycles at a current density of 1 A g–1, achieving a specific capacity of 217 mA h g–1. Our work provides novel insight into interfacial regulation of Zn anodes for the implementation of practical aqueous zinc-ion batteries with long-term cycling characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信