离子-偶极相互作用对长寿命锂离子电池氧化硅阳极的破溶剂化优势效应

IF 26.6 1区 材料科学 Q1 Engineering
Shengwei Dong, Lingfeng Shi, Shenglu Geng, Yanbin Ning, Cong Kang, Yan Zhang, Ziwei Liu, Jiaming Zhu, Zhuomin Qiang, Lin Zhou, Geping Yin, Dalong Li, Tiansheng Mu, Shuaifeng Lou
{"title":"离子-偶极相互作用对长寿命锂离子电池氧化硅阳极的破溶剂化优势效应","authors":"Shengwei Dong,&nbsp;Lingfeng Shi,&nbsp;Shenglu Geng,&nbsp;Yanbin Ning,&nbsp;Cong Kang,&nbsp;Yan Zhang,&nbsp;Ziwei Liu,&nbsp;Jiaming Zhu,&nbsp;Zhuomin Qiang,&nbsp;Lin Zhou,&nbsp;Geping Yin,&nbsp;Dalong Li,&nbsp;Tiansheng Mu,&nbsp;Shuaifeng Lou","doi":"10.1007/s40820-024-01592-1","DOIUrl":null,"url":null,"abstract":"<div><p>Micrometer-sized silicon oxide (SiO) anodes encounter challenges in large-scale applications due to significant volume expansion during the alloy/de-alloy process. Herein, an innovative deep eutectic electrolyte derived from succinonitrile is introduced to enhance the cycling stability of SiO anodes. Density functional theory calculations validate a robust ion–dipole interaction between lithium ions (Li<sup>+</sup>) and succinonitrile (SN). The cosolvent fluoroethylene carbonate (FEC) optimizes the Li<sup>+</sup> solvation structure in the SN-based electrolyte with its weakly solvating ability. Molecular dynamics simulations investigate the regulating mechanism of ion–dipole and cation–anion interaction. The unique Li<sup>+</sup> solvation structure, enriched with FEC and TFSI<sup>−</sup>, facilitates the formation of an inorganic–organic composite solid electrolyte interphase on SiO anodes. Micro-CT further detects the inhibiting effect on the SiO volume expansion. As a result, the SiO|LiCoO<sub>2</sub> full cells exhibit excellent electrochemical performance in deep eutectic-based electrolytes. This work presents an effective strategy for extending the cycle life of SiO anodes by designing a new SN-based deep eutectic electrolyte. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01592-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Breaking Solvation Dominance Effect Enabled by Ion–Dipole Interaction Toward Long-Spanlife Silicon Oxide Anodes in Lithium-Ion Batteries\",\"authors\":\"Shengwei Dong,&nbsp;Lingfeng Shi,&nbsp;Shenglu Geng,&nbsp;Yanbin Ning,&nbsp;Cong Kang,&nbsp;Yan Zhang,&nbsp;Ziwei Liu,&nbsp;Jiaming Zhu,&nbsp;Zhuomin Qiang,&nbsp;Lin Zhou,&nbsp;Geping Yin,&nbsp;Dalong Li,&nbsp;Tiansheng Mu,&nbsp;Shuaifeng Lou\",\"doi\":\"10.1007/s40820-024-01592-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Micrometer-sized silicon oxide (SiO) anodes encounter challenges in large-scale applications due to significant volume expansion during the alloy/de-alloy process. Herein, an innovative deep eutectic electrolyte derived from succinonitrile is introduced to enhance the cycling stability of SiO anodes. Density functional theory calculations validate a robust ion–dipole interaction between lithium ions (Li<sup>+</sup>) and succinonitrile (SN). The cosolvent fluoroethylene carbonate (FEC) optimizes the Li<sup>+</sup> solvation structure in the SN-based electrolyte with its weakly solvating ability. Molecular dynamics simulations investigate the regulating mechanism of ion–dipole and cation–anion interaction. The unique Li<sup>+</sup> solvation structure, enriched with FEC and TFSI<sup>−</sup>, facilitates the formation of an inorganic–organic composite solid electrolyte interphase on SiO anodes. Micro-CT further detects the inhibiting effect on the SiO volume expansion. As a result, the SiO|LiCoO<sub>2</sub> full cells exhibit excellent electrochemical performance in deep eutectic-based electrolytes. This work presents an effective strategy for extending the cycle life of SiO anodes by designing a new SN-based deep eutectic electrolyte. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-024-01592-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01592-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01592-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

微米尺寸的氧化硅(SiO)阳极在大规模应用中遇到挑战,因为在合金/脱合金过程中体积会显著膨胀。本文引入了一种创新的琥珀腈深共晶电解质,以提高SiO阳极的循环稳定性。密度泛函理论计算证实了锂离子(Li+)和琥珀腈(SN)之间存在强大的离子-偶极相互作用。助溶剂氟乙烯碳酸酯(FEC)以其弱溶剂化能力优化了sn基电解质中Li+的溶剂化结构。分子动力学模拟研究了离子-偶极子和阳离子-阴离子相互作用的调节机制。独特的Li+溶剂化结构,富含FEC和TFSI−,有利于在SiO阳极上形成无机-有机复合固体电解质界面。Micro-CT进一步检测了对SiO体积膨胀的抑制作用。结果表明,SiO|LiCoO2全电池在深共晶电解质中表现出优异的电化学性能。本文通过设计一种新型sn基深共晶电解液,提出了延长SiO阳极循环寿命的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breaking Solvation Dominance Effect Enabled by Ion–Dipole Interaction Toward Long-Spanlife Silicon Oxide Anodes in Lithium-Ion Batteries

Micrometer-sized silicon oxide (SiO) anodes encounter challenges in large-scale applications due to significant volume expansion during the alloy/de-alloy process. Herein, an innovative deep eutectic electrolyte derived from succinonitrile is introduced to enhance the cycling stability of SiO anodes. Density functional theory calculations validate a robust ion–dipole interaction between lithium ions (Li+) and succinonitrile (SN). The cosolvent fluoroethylene carbonate (FEC) optimizes the Li+ solvation structure in the SN-based electrolyte with its weakly solvating ability. Molecular dynamics simulations investigate the regulating mechanism of ion–dipole and cation–anion interaction. The unique Li+ solvation structure, enriched with FEC and TFSI, facilitates the formation of an inorganic–organic composite solid electrolyte interphase on SiO anodes. Micro-CT further detects the inhibiting effect on the SiO volume expansion. As a result, the SiO|LiCoO2 full cells exhibit excellent electrochemical performance in deep eutectic-based electrolytes. This work presents an effective strategy for extending the cycle life of SiO anodes by designing a new SN-based deep eutectic electrolyte.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信