碳纳米管对硅基锂离子电池电极膨胀的影响

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yujin Kim, Moonjin Kim, Namhyung Kim, Hyungyeon Cha, Seokjin Kim, Jaekyung Sung, Jaephil Cho
{"title":"碳纳米管对硅基锂离子电池电极膨胀的影响","authors":"Yujin Kim, Moonjin Kim, Namhyung Kim, Hyungyeon Cha, Seokjin Kim, Jaekyung Sung, Jaephil Cho","doi":"10.1016/j.ensm.2024.103983","DOIUrl":null,"url":null,"abstract":"A high-capacity silicon-based anode has been used in commercial lithium-ion batteries as a form of an addition to an existing graphite electrode for the realization of high energy density. However, under industrial conditions using high-density electrodes (&gt;1.6 g cc<sup>–1</sup>, low electrode porosity), the electrode expansion becomes more severe, which engenders the decrease in energy density and safety issues. Carbon nanotubes (CNTs) have emerged as promising additives due to their outstanding electrical conductivity and mechanical strength. Despite their potential, the chemo-mechanical and electrochemical roles of CNTs in silicon-based anodes are not fully understood. Herein, we identify the mechanisms by which CNTs enhance silicon-based anodes with constructive comparison of commercial conductive agents. Our results show that CNTs alleviate strain-induced interfacial reactions and control the growth of the solid electrolyte interphase (SEI) layer during cycling. CNTs provide mechanical reinforcement, reducing particle-level cracking and enhancing electron pathways, which lowers surface tension and decelerates crack propagation. This significantly diminishes electrode pulverization and swelling. As a result, we observe a stable cycling stability (Cycle life: 94.6% for 100 cycles) of silicon-graphite composite (SGC) in 1 Ah pouch-type full cell. Remarkably, the SGC blended with graphite showed better electrochemical performance at low temperature cycling, fast-charging cycling and rate capability compared to the conventional graphite.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"147 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Impact of CNT on Electrode Expansion in Silicon-based Lithium-ion Batteries\",\"authors\":\"Yujin Kim, Moonjin Kim, Namhyung Kim, Hyungyeon Cha, Seokjin Kim, Jaekyung Sung, Jaephil Cho\",\"doi\":\"10.1016/j.ensm.2024.103983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high-capacity silicon-based anode has been used in commercial lithium-ion batteries as a form of an addition to an existing graphite electrode for the realization of high energy density. However, under industrial conditions using high-density electrodes (&gt;1.6 g cc<sup>–1</sup>, low electrode porosity), the electrode expansion becomes more severe, which engenders the decrease in energy density and safety issues. Carbon nanotubes (CNTs) have emerged as promising additives due to their outstanding electrical conductivity and mechanical strength. Despite their potential, the chemo-mechanical and electrochemical roles of CNTs in silicon-based anodes are not fully understood. Herein, we identify the mechanisms by which CNTs enhance silicon-based anodes with constructive comparison of commercial conductive agents. Our results show that CNTs alleviate strain-induced interfacial reactions and control the growth of the solid electrolyte interphase (SEI) layer during cycling. CNTs provide mechanical reinforcement, reducing particle-level cracking and enhancing electron pathways, which lowers surface tension and decelerates crack propagation. This significantly diminishes electrode pulverization and swelling. As a result, we observe a stable cycling stability (Cycle life: 94.6% for 100 cycles) of silicon-graphite composite (SGC) in 1 Ah pouch-type full cell. Remarkably, the SGC blended with graphite showed better electrochemical performance at low temperature cycling, fast-charging cycling and rate capability compared to the conventional graphite.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2024.103983\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103983","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高容量硅基阳极已被用于商用锂离子电池,作为现有石墨电极的一种附加形式,以实现高能量密度。然而,在工业条件下使用高密度电极(>1.6 g cc-1,低电极孔隙率),电极膨胀变得更加严重,从而导致能量密度下降和安全问题。碳纳米管(CNTs)由于其优异的导电性和机械强度而成为一种很有前途的添加剂。尽管具有潜力,但碳纳米管在硅基阳极中的化学-力学和电化学作用尚未完全了解。在此,我们通过与商业导电剂的建设性比较,确定了碳纳米管增强硅基阳极的机制。研究结果表明,在循环过程中,CNTs减轻了应变诱导的界面反应,并控制了固体电解质界面层(SEI)的生长。CNTs提供机械强化,减少颗粒级裂纹,增强电子路径,从而降低表面张力,减缓裂纹扩展。这大大减少了电极粉化和膨胀。结果表明,硅-石墨复合材料(SGC)在1 Ah袋式充满电池中具有稳定的循环稳定性(100次循环寿命为94.6%)。值得注意的是,与普通石墨相比,掺合石墨的SGC在低温循环、快速充电循环和倍率性能方面表现出更好的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the Impact of CNT on Electrode Expansion in Silicon-based Lithium-ion Batteries
A high-capacity silicon-based anode has been used in commercial lithium-ion batteries as a form of an addition to an existing graphite electrode for the realization of high energy density. However, under industrial conditions using high-density electrodes (>1.6 g cc–1, low electrode porosity), the electrode expansion becomes more severe, which engenders the decrease in energy density and safety issues. Carbon nanotubes (CNTs) have emerged as promising additives due to their outstanding electrical conductivity and mechanical strength. Despite their potential, the chemo-mechanical and electrochemical roles of CNTs in silicon-based anodes are not fully understood. Herein, we identify the mechanisms by which CNTs enhance silicon-based anodes with constructive comparison of commercial conductive agents. Our results show that CNTs alleviate strain-induced interfacial reactions and control the growth of the solid electrolyte interphase (SEI) layer during cycling. CNTs provide mechanical reinforcement, reducing particle-level cracking and enhancing electron pathways, which lowers surface tension and decelerates crack propagation. This significantly diminishes electrode pulverization and swelling. As a result, we observe a stable cycling stability (Cycle life: 94.6% for 100 cycles) of silicon-graphite composite (SGC) in 1 Ah pouch-type full cell. Remarkably, the SGC blended with graphite showed better electrochemical performance at low temperature cycling, fast-charging cycling and rate capability compared to the conventional graphite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信