基于容错量子总线架构的远程数据传输

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Shin Ho Choe, Robert König
{"title":"基于容错量子总线架构的远程数据传输","authors":"Shin Ho Choe, Robert König","doi":"10.1038/s41534-024-00928-4","DOIUrl":null,"url":null,"abstract":"<p>We propose a fault-tolerant scheme for generating long-range entanglement at the ends of a rectangular array of qubits of length <i>R</i> with a square cross-section of <span>\\(m=O({\\log }^{2}R)\\)</span> qubits. It is realized by a constant-depth circuit producing a constant-fidelity Bell-pair (independent of <i>R</i>) for local stochastic noise of strength below an experimentally realistic threshold. The scheme can be viewed as a quantum bus in a quantum computing architecture where qubits are arranged on a rectangular 3D grid, and all operations are between neighboring qubits. Alternatively, it can be seen as a quantum repeater protocol along a line, with neighboring repeaters placed at a short distance to allow constant-fidelity nearest-neighbor operations. To show our protocol uses a number of qubits close to optimal, we show that any noise-resilient distance-<i>R</i> entanglement generation scheme realized by a constant-depth circuit needs at least <span>\\(m=\\Omega (\\log R)\\)</span> qubits per repeater.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"133 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-range data transmission in a fault-tolerant quantum bus architecture\",\"authors\":\"Shin Ho Choe, Robert König\",\"doi\":\"10.1038/s41534-024-00928-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a fault-tolerant scheme for generating long-range entanglement at the ends of a rectangular array of qubits of length <i>R</i> with a square cross-section of <span>\\\\(m=O({\\\\log }^{2}R)\\\\)</span> qubits. It is realized by a constant-depth circuit producing a constant-fidelity Bell-pair (independent of <i>R</i>) for local stochastic noise of strength below an experimentally realistic threshold. The scheme can be viewed as a quantum bus in a quantum computing architecture where qubits are arranged on a rectangular 3D grid, and all operations are between neighboring qubits. Alternatively, it can be seen as a quantum repeater protocol along a line, with neighboring repeaters placed at a short distance to allow constant-fidelity nearest-neighbor operations. To show our protocol uses a number of qubits close to optimal, we show that any noise-resilient distance-<i>R</i> entanglement generation scheme realized by a constant-depth circuit needs at least <span>\\\\(m=\\\\Omega (\\\\log R)\\\\)</span> qubits per repeater.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00928-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00928-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种容错方案,用于在长度为R的矩形量子位阵列的末端产生远程纠缠,其横截面为\(m=O({\log }^{2}R)\)量子位。对于强度低于实验实际阈值的局部随机噪声,通过恒深电路产生恒定保真度的贝尔对(与R无关)来实现。该方案可以看作是量子计算架构中的量子总线,其中量子位排列在矩形3D网格上,所有操作都在相邻量子位之间进行。或者,它可以被视为沿线路的量子中继器协议,相邻中继器放置在短距离处,以允许恒定保真度的最近邻操作。为了证明我们的协议使用了许多接近最佳的量子比特,我们表明,任何由定深电路实现的抗噪声距离-r纠缠生成方案,每个中继器至少需要\(m=\Omega (\log R)\)量子比特。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Long-range data transmission in a fault-tolerant quantum bus architecture

Long-range data transmission in a fault-tolerant quantum bus architecture

We propose a fault-tolerant scheme for generating long-range entanglement at the ends of a rectangular array of qubits of length R with a square cross-section of \(m=O({\log }^{2}R)\) qubits. It is realized by a constant-depth circuit producing a constant-fidelity Bell-pair (independent of R) for local stochastic noise of strength below an experimentally realistic threshold. The scheme can be viewed as a quantum bus in a quantum computing architecture where qubits are arranged on a rectangular 3D grid, and all operations are between neighboring qubits. Alternatively, it can be seen as a quantum repeater protocol along a line, with neighboring repeaters placed at a short distance to allow constant-fidelity nearest-neighbor operations. To show our protocol uses a number of qubits close to optimal, we show that any noise-resilient distance-R entanglement generation scheme realized by a constant-depth circuit needs at least \(m=\Omega (\log R)\) qubits per repeater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信