David Remy, Sandra Antoine-Bally, Sophie de Toqueville, Célia Jolly, Anne-Sophie Macé, Gabriel Champenois, Fariba Nemati, Isabel Brito, Virginie Raynal, Amulya Priya, Adèle Berlioz, Ahmed Dahmani, André Nicolas, Didier Meseure, Elisabetta Marangoni, Philippe Chavrier
{"title":"TFEB在mTORC1抑制下触发三阴性乳腺癌细胞的基质降解和侵袭程序","authors":"David Remy, Sandra Antoine-Bally, Sophie de Toqueville, Célia Jolly, Anne-Sophie Macé, Gabriel Champenois, Fariba Nemati, Isabel Brito, Virginie Raynal, Amulya Priya, Adèle Berlioz, Ahmed Dahmani, André Nicolas, Didier Meseure, Elisabetta Marangoni, Philippe Chavrier","doi":"10.1016/j.devcel.2024.12.005","DOIUrl":null,"url":null,"abstract":"The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is frequently hyperactivated in triple-negative breast cancers (TNBCs) associated with poor prognosis and is a therapeutic target in breast cancer management. Here, we describe the effects of repression of mTOR-containing complex 1 (mTORC1) through knockdown of several key mTORC1 components or with mTOR inhibitors used in cancer therapy. mTORC1 repression results in an ∼10-fold increase in extracellular matrix proteolytic degradation. Repression in several TNBC models, including in patient-derived xenografts (PDXs), induces nuclear translocation of transcription factor EB (TFEB), which drives a transcriptional program that controls endolysosome function and exocytosis. This response triggers a surge in endolysosomal recycling and the surface exposure of membrane type 1 matrix metalloproteinase (MT1-MMP) associated with invadopodia hyperfunctionality. Furthermore, repression of mTORC1 results in a basal-like breast cancer cell phenotype and disruption of ductal carcinoma <em>in situ</em> (DCIS)-like organization in a tumor xenograft model. Altogether, our data call for revaluation of mTOR inhibitors in breast cancer therapy.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"31 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TFEB triggers a matrix degradation and invasion program in triple-negative breast cancer cells upon mTORC1 repression\",\"authors\":\"David Remy, Sandra Antoine-Bally, Sophie de Toqueville, Célia Jolly, Anne-Sophie Macé, Gabriel Champenois, Fariba Nemati, Isabel Brito, Virginie Raynal, Amulya Priya, Adèle Berlioz, Ahmed Dahmani, André Nicolas, Didier Meseure, Elisabetta Marangoni, Philippe Chavrier\",\"doi\":\"10.1016/j.devcel.2024.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is frequently hyperactivated in triple-negative breast cancers (TNBCs) associated with poor prognosis and is a therapeutic target in breast cancer management. Here, we describe the effects of repression of mTOR-containing complex 1 (mTORC1) through knockdown of several key mTORC1 components or with mTOR inhibitors used in cancer therapy. mTORC1 repression results in an ∼10-fold increase in extracellular matrix proteolytic degradation. Repression in several TNBC models, including in patient-derived xenografts (PDXs), induces nuclear translocation of transcription factor EB (TFEB), which drives a transcriptional program that controls endolysosome function and exocytosis. This response triggers a surge in endolysosomal recycling and the surface exposure of membrane type 1 matrix metalloproteinase (MT1-MMP) associated with invadopodia hyperfunctionality. Furthermore, repression of mTORC1 results in a basal-like breast cancer cell phenotype and disruption of ductal carcinoma <em>in situ</em> (DCIS)-like organization in a tumor xenograft model. Altogether, our data call for revaluation of mTOR inhibitors in breast cancer therapy.\",\"PeriodicalId\":11157,\"journal\":{\"name\":\"Developmental cell\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.devcel.2024.12.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.12.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
TFEB triggers a matrix degradation and invasion program in triple-negative breast cancer cells upon mTORC1 repression
The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is frequently hyperactivated in triple-negative breast cancers (TNBCs) associated with poor prognosis and is a therapeutic target in breast cancer management. Here, we describe the effects of repression of mTOR-containing complex 1 (mTORC1) through knockdown of several key mTORC1 components or with mTOR inhibitors used in cancer therapy. mTORC1 repression results in an ∼10-fold increase in extracellular matrix proteolytic degradation. Repression in several TNBC models, including in patient-derived xenografts (PDXs), induces nuclear translocation of transcription factor EB (TFEB), which drives a transcriptional program that controls endolysosome function and exocytosis. This response triggers a surge in endolysosomal recycling and the surface exposure of membrane type 1 matrix metalloproteinase (MT1-MMP) associated with invadopodia hyperfunctionality. Furthermore, repression of mTORC1 results in a basal-like breast cancer cell phenotype and disruption of ductal carcinoma in situ (DCIS)-like organization in a tumor xenograft model. Altogether, our data call for revaluation of mTOR inhibitors in breast cancer therapy.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.