链接到密度:非晶冰压缩和解压过程中的拓扑跃迁和迟滞的起源

IF 9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yair Augusto Gutiérrez Fosado, Davide Michieletto, Fausto Martelli
{"title":"链接到密度:非晶冰压缩和解压过程中的拓扑跃迁和迟滞的起源","authors":"Yair Augusto Gutiérrez Fosado, Davide Michieletto, Fausto Martelli","doi":"10.1103/physrevlett.133.266102","DOIUrl":null,"url":null,"abstract":"In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations. At the phase transition, the transient opening of the HBN topological motifs yields mechanical fragility on the macroscale. Our results provide a detailed microscopic description of the topological nature of the phase transition and the hysteresis cycle between amorphous ices. We argue that the topological transition discovered in this work may not only improve our understanding of amorphous ices, but also represent a generic mechanism for the densification of network-forming materials. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"18 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Link to Densify: Topological Transitions and Origin of Hysteresis During the Compression and Decompression of Amorphous Ices\",\"authors\":\"Yair Augusto Gutiérrez Fosado, Davide Michieletto, Fausto Martelli\",\"doi\":\"10.1103/physrevlett.133.266102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations. At the phase transition, the transient opening of the HBN topological motifs yields mechanical fragility on the macroscale. Our results provide a detailed microscopic description of the topological nature of the phase transition and the hysteresis cycle between amorphous ices. We argue that the topological transition discovered in this work may not only improve our understanding of amorphous ices, but also represent a generic mechanism for the densification of network-forming materials. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.266102\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.266102","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们研究了非晶冰之间的相变和分离它们的滞后循环的性质。我们发现,当系统从低压下的低密度非晶冰(LDA)转变为高压下的高密度非晶冰(HDA)时,发生了拓扑转变。具体来说,我们发现氢键网络(HBN)在LDA和HDA相中表现出质的不同拓扑结构:前者具有解纠缠的环基序,后者具有拓扑复杂的长寿命hopf连接和结结构。在相变中,HBN拓扑基元的瞬态打开在宏观尺度上产生机械脆性。我们的结果提供了一个详细的微观描述相变的拓扑性质和非晶冰之间的滞回循环。我们认为,在这项工作中发现的拓扑转变不仅可以提高我们对非晶冰的理解,而且还代表了网络形成材料致密化的一般机制。2024年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Link to Densify: Topological Transitions and Origin of Hysteresis During the Compression and Decompression of Amorphous Ices
In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations. At the phase transition, the transient opening of the HBN topological motifs yields mechanical fragility on the macroscale. Our results provide a detailed microscopic description of the topological nature of the phase transition and the hysteresis cycle between amorphous ices. We argue that the topological transition discovered in this work may not only improve our understanding of amorphous ices, but also represent a generic mechanism for the densification of network-forming materials. Published by the American Physical Society 2024
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信