Carolyn A Chabuz, Renee M Banakis Hartl, Kenny Rodriguez, Joseph Gonzalez, Stephen P Cass, Nathaniel T Greene
{"title":"在尸体标本中使用透视和耳蜗内压力表征尖端折叠。","authors":"Carolyn A Chabuz, Renee M Banakis Hartl, Kenny Rodriguez, Joseph Gonzalez, Stephen P Cass, Nathaniel T Greene","doi":"10.1002/lary.31977","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Cochlear implant array malpositioning is associated with impaired speech perception, vertigo, and facial nerve stimulation. Tip fold-over is a subset of malpositioning that occurs more often with perimodiolar electrodes, but historically it has not been characterized due to lack of knowledge regarding electrode movements of the electrode within the cochlea. The aim of this study was to characterize the mechanics of tip fold-over events and their associated insertion pressure profiles.</p><p><strong>Methods: </strong>Cadaveric human heads were surgically prepared with a mastoidectomy and facial recess. Fiberoptic pressure sensors were inserted into the scala vestibuli and tympani to measure intracochlear pressures. Perimodiolar CI electrodes (Cochlear Slim-Modiolar, CI532) were inserted via round window under fluoroscopy.</p><p><strong>Results: </strong>Three types of tip fold-over events were observed: anterior-posterior C-shaped, medial-lateral C-shaped, and S-shaped roll-overs. The largest transient pressures occurred with anterior-posterior and S-type roll-over, and were associated with rotation or twisting inside the cochlea.</p><p><strong>Conclusions: </strong>Results demonstrate at least three subtypes of tip fold-overs. Elevated pressure transients were noted before and during the tip fold-over event related to electrode twisting. The characterization of tip fold-over into subtypes is novel and may aid identification of tip fold-over events intraoperatively in the future. It remains important to identify tip fold-over events, and they should be recognized early using a multimodal verification system. Further investigation is still required to determine the significance of these changes and other possible patterns of intracochlear electrode movement.</p><p><strong>Level of evidence: </strong>N/A: Cadaver study Laryngoscope, 2024.</p>","PeriodicalId":49921,"journal":{"name":"Laryngoscope","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Tip Fold-Over Using Fluoroscopy and Intracochlear Pressure in Cadaver Specimens.\",\"authors\":\"Carolyn A Chabuz, Renee M Banakis Hartl, Kenny Rodriguez, Joseph Gonzalez, Stephen P Cass, Nathaniel T Greene\",\"doi\":\"10.1002/lary.31977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Cochlear implant array malpositioning is associated with impaired speech perception, vertigo, and facial nerve stimulation. Tip fold-over is a subset of malpositioning that occurs more often with perimodiolar electrodes, but historically it has not been characterized due to lack of knowledge regarding electrode movements of the electrode within the cochlea. The aim of this study was to characterize the mechanics of tip fold-over events and their associated insertion pressure profiles.</p><p><strong>Methods: </strong>Cadaveric human heads were surgically prepared with a mastoidectomy and facial recess. Fiberoptic pressure sensors were inserted into the scala vestibuli and tympani to measure intracochlear pressures. Perimodiolar CI electrodes (Cochlear Slim-Modiolar, CI532) were inserted via round window under fluoroscopy.</p><p><strong>Results: </strong>Three types of tip fold-over events were observed: anterior-posterior C-shaped, medial-lateral C-shaped, and S-shaped roll-overs. The largest transient pressures occurred with anterior-posterior and S-type roll-over, and were associated with rotation or twisting inside the cochlea.</p><p><strong>Conclusions: </strong>Results demonstrate at least three subtypes of tip fold-overs. Elevated pressure transients were noted before and during the tip fold-over event related to electrode twisting. The characterization of tip fold-over into subtypes is novel and may aid identification of tip fold-over events intraoperatively in the future. It remains important to identify tip fold-over events, and they should be recognized early using a multimodal verification system. Further investigation is still required to determine the significance of these changes and other possible patterns of intracochlear electrode movement.</p><p><strong>Level of evidence: </strong>N/A: Cadaver study Laryngoscope, 2024.</p>\",\"PeriodicalId\":49921,\"journal\":{\"name\":\"Laryngoscope\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laryngoscope\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/lary.31977\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laryngoscope","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/lary.31977","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Characterization of Tip Fold-Over Using Fluoroscopy and Intracochlear Pressure in Cadaver Specimens.
Objectives: Cochlear implant array malpositioning is associated with impaired speech perception, vertigo, and facial nerve stimulation. Tip fold-over is a subset of malpositioning that occurs more often with perimodiolar electrodes, but historically it has not been characterized due to lack of knowledge regarding electrode movements of the electrode within the cochlea. The aim of this study was to characterize the mechanics of tip fold-over events and their associated insertion pressure profiles.
Methods: Cadaveric human heads were surgically prepared with a mastoidectomy and facial recess. Fiberoptic pressure sensors were inserted into the scala vestibuli and tympani to measure intracochlear pressures. Perimodiolar CI electrodes (Cochlear Slim-Modiolar, CI532) were inserted via round window under fluoroscopy.
Results: Three types of tip fold-over events were observed: anterior-posterior C-shaped, medial-lateral C-shaped, and S-shaped roll-overs. The largest transient pressures occurred with anterior-posterior and S-type roll-over, and were associated with rotation or twisting inside the cochlea.
Conclusions: Results demonstrate at least three subtypes of tip fold-overs. Elevated pressure transients were noted before and during the tip fold-over event related to electrode twisting. The characterization of tip fold-over into subtypes is novel and may aid identification of tip fold-over events intraoperatively in the future. It remains important to identify tip fold-over events, and they should be recognized early using a multimodal verification system. Further investigation is still required to determine the significance of these changes and other possible patterns of intracochlear electrode movement.
Level of evidence: N/A: Cadaver study Laryngoscope, 2024.
期刊介绍:
The Laryngoscope has been the leading source of information on advances in the diagnosis and treatment of head and neck disorders since 1890. The Laryngoscope is the first choice among otolaryngologists for publication of their important findings and techniques. Each monthly issue of The Laryngoscope features peer-reviewed medical, clinical, and research contributions in general otolaryngology, allergy/rhinology, otology/neurotology, laryngology/bronchoesophagology, head and neck surgery, sleep medicine, pediatric otolaryngology, facial plastics and reconstructive surgery, oncology, and communicative disorders. Contributions include papers and posters presented at the Annual and Section Meetings of the Triological Society, as well as independent papers, "How I Do It", "Triological Best Practice" articles, and contemporary reviews. Theses authored by the Triological Society’s new Fellows as well as papers presented at meetings of the American Laryngological Association are published in The Laryngoscope.
• Broncho-esophagology
• Communicative disorders
• Head and neck surgery
• Plastic and reconstructive facial surgery
• Oncology
• Speech and hearing defects