Weike Chen, Sihan Yu, Bernice Webber, Emily L. DeWolf, Rory Kilmer, Sijie Xian, Connor R. Schmidt, Elizabeth M. Power, Matthew J. Webber
{"title":"用于葡萄糖反应性胰高血糖素递送的超分子肽库。","authors":"Weike Chen, Sihan Yu, Bernice Webber, Emily L. DeWolf, Rory Kilmer, Sijie Xian, Connor R. Schmidt, Elizabeth M. Power, Matthew J. Webber","doi":"10.1002/jbm.a.37854","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Precise blood glucose control continues to be a critical challenge in the treatment and management of type 1 diabetes in order to mitigate both acute and chronic complications. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions. Glucose responsiveness is driven by reversible binding between PBA and glucose, which modulates the electrostatic interactions necessary for hydrogel formation and dissolution. Through comprehensive in vitro characterization, including circular dichroism, zeta potential measurements, and rheological assessments, the PA-PBA system is found to exhibit glucose-dependent assembly, enabling controlled glucagon release that is inversely related to glucose concentration. Glucagon release is accelerated under low glucose conditions, simulating a hypoglycemic state, with a reduced rate seen at higher glucose levels. Evaluation of the platform in vivo using a type 1 diabetic mouse model demonstrates the efficacy in protecting against insulin-induced hypoglycemia by restoring blood glucose levels following an insulin overdose. The ability to tailor glucagon release in response to fluctuating glucose concentrations underscores the potential of this platform for improving glycemic control. These findings suggest that glucose-stabilized supramolecular peptide hydrogels hold significant promise for responsive drug delivery applications, offering an approach to manage glucose levels in diabetes and other metabolic disorders.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supramolecular Peptide Depots for Glucose-Responsive Glucagon Delivery\",\"authors\":\"Weike Chen, Sihan Yu, Bernice Webber, Emily L. DeWolf, Rory Kilmer, Sijie Xian, Connor R. Schmidt, Elizabeth M. Power, Matthew J. Webber\",\"doi\":\"10.1002/jbm.a.37854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Precise blood glucose control continues to be a critical challenge in the treatment and management of type 1 diabetes in order to mitigate both acute and chronic complications. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions. Glucose responsiveness is driven by reversible binding between PBA and glucose, which modulates the electrostatic interactions necessary for hydrogel formation and dissolution. Through comprehensive in vitro characterization, including circular dichroism, zeta potential measurements, and rheological assessments, the PA-PBA system is found to exhibit glucose-dependent assembly, enabling controlled glucagon release that is inversely related to glucose concentration. Glucagon release is accelerated under low glucose conditions, simulating a hypoglycemic state, with a reduced rate seen at higher glucose levels. Evaluation of the platform in vivo using a type 1 diabetic mouse model demonstrates the efficacy in protecting against insulin-induced hypoglycemia by restoring blood glucose levels following an insulin overdose. The ability to tailor glucagon release in response to fluctuating glucose concentrations underscores the potential of this platform for improving glycemic control. These findings suggest that glucose-stabilized supramolecular peptide hydrogels hold significant promise for responsive drug delivery applications, offering an approach to manage glucose levels in diabetes and other metabolic disorders.</p>\\n </div>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37854\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37854","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Supramolecular Peptide Depots for Glucose-Responsive Glucagon Delivery
Precise blood glucose control continues to be a critical challenge in the treatment and management of type 1 diabetes in order to mitigate both acute and chronic complications. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions. Glucose responsiveness is driven by reversible binding between PBA and glucose, which modulates the electrostatic interactions necessary for hydrogel formation and dissolution. Through comprehensive in vitro characterization, including circular dichroism, zeta potential measurements, and rheological assessments, the PA-PBA system is found to exhibit glucose-dependent assembly, enabling controlled glucagon release that is inversely related to glucose concentration. Glucagon release is accelerated under low glucose conditions, simulating a hypoglycemic state, with a reduced rate seen at higher glucose levels. Evaluation of the platform in vivo using a type 1 diabetic mouse model demonstrates the efficacy in protecting against insulin-induced hypoglycemia by restoring blood glucose levels following an insulin overdose. The ability to tailor glucagon release in response to fluctuating glucose concentrations underscores the potential of this platform for improving glycemic control. These findings suggest that glucose-stabilized supramolecular peptide hydrogels hold significant promise for responsive drug delivery applications, offering an approach to manage glucose levels in diabetes and other metabolic disorders.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.