METTL3基因敲除在黑色素瘤和结肠癌细胞中的多模式肿瘤抑制作用。

IF 2.1 4区 生物学 Q4 CELL BIOLOGY
Arezoo Bazargani, Masoumeh Fakhr Taha, Bahram Mohammad Soltani, Arash Javeri
{"title":"METTL3基因敲除在黑色素瘤和结肠癌细胞中的多模式肿瘤抑制作用。","authors":"Arezoo Bazargani, Masoumeh Fakhr Taha, Bahram Mohammad Soltani, Arash Javeri","doi":"10.1007/s00418-024-02346-1","DOIUrl":null,"url":null,"abstract":"<p><p>METTL3, an m6A methyltransferase, is integral to the regulation of messenger RNA (mRNA) biogenesis, degradation, and translation through the N6-methyladenosine (m6A) modification. Alterations in m6A homeostasis have been implicated in the development, progression, invasion, and metastasis of certain cancers. The present research aims to examine the consequences of METTL3 knockdown using short hairpin RNA (shRNA) on the proliferation and invasive capabilities of human colorectal and melanoma cancer cell lines. A specific shRNA against METTL3 mRNA was designed and inserted into an expression vector. Highly invasive colorectal cancer cell line SW480 and melanoma cell line A375 were cultured and transfected by METTL3-shRNA and scramble-control vectors and kept under culture condition for 2 weeks. The cells were harvested for analysis of gene expression by quantitative polymerase chain reaction (qPCR), invasion assay using three-dimensional (3D) spheroid assay and cell cycle and apoptosis analyses. In the METTL3-shRNA transfected cells, the expression of METTL3, VIM, SNAI1, SNAI2, ZEB1, CDH1, and TGFB1 genes were downregulated significantly compared with the scramble-control transfected cells. Expression of b-catenin, N-cadherin, vimentin, ZEB1, pro- and active MMP2, OCT4A, SOX2, and MYC proteins were also downregulated following METTL3 knockdown. Transfection by METTL3-shRNA reduced proliferation rate of the cells and increased the apoptotic rate significantly. Both migration and invasion rate of the cancer cells transfected with METTL3-shRNA were significantly decreased. These findings highlight the pro-oncogenic function of METTL3 in colorectal and melanoma cancer cells, indicating that inhibiting METTL3 could be a promising approach for tumor suppression across multiple cancer types; nonetheless, further investigation is essential to confirm these observations.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"163 1","pages":"21"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal tumor suppression by METTL3 gene knockdown in melanoma and colon cancer cells.\",\"authors\":\"Arezoo Bazargani, Masoumeh Fakhr Taha, Bahram Mohammad Soltani, Arash Javeri\",\"doi\":\"10.1007/s00418-024-02346-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>METTL3, an m6A methyltransferase, is integral to the regulation of messenger RNA (mRNA) biogenesis, degradation, and translation through the N6-methyladenosine (m6A) modification. Alterations in m6A homeostasis have been implicated in the development, progression, invasion, and metastasis of certain cancers. The present research aims to examine the consequences of METTL3 knockdown using short hairpin RNA (shRNA) on the proliferation and invasive capabilities of human colorectal and melanoma cancer cell lines. A specific shRNA against METTL3 mRNA was designed and inserted into an expression vector. Highly invasive colorectal cancer cell line SW480 and melanoma cell line A375 were cultured and transfected by METTL3-shRNA and scramble-control vectors and kept under culture condition for 2 weeks. The cells were harvested for analysis of gene expression by quantitative polymerase chain reaction (qPCR), invasion assay using three-dimensional (3D) spheroid assay and cell cycle and apoptosis analyses. In the METTL3-shRNA transfected cells, the expression of METTL3, VIM, SNAI1, SNAI2, ZEB1, CDH1, and TGFB1 genes were downregulated significantly compared with the scramble-control transfected cells. Expression of b-catenin, N-cadherin, vimentin, ZEB1, pro- and active MMP2, OCT4A, SOX2, and MYC proteins were also downregulated following METTL3 knockdown. Transfection by METTL3-shRNA reduced proliferation rate of the cells and increased the apoptotic rate significantly. Both migration and invasion rate of the cancer cells transfected with METTL3-shRNA were significantly decreased. These findings highlight the pro-oncogenic function of METTL3 in colorectal and melanoma cancer cells, indicating that inhibiting METTL3 could be a promising approach for tumor suppression across multiple cancer types; nonetheless, further investigation is essential to confirm these observations.</p>\",\"PeriodicalId\":13107,\"journal\":{\"name\":\"Histochemistry and Cell Biology\",\"volume\":\"163 1\",\"pages\":\"21\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00418-024-02346-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-024-02346-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

METTL3是一种m6A甲基转移酶,通过n6 -甲基腺苷(m6A)修饰调控信使RNA (mRNA)的生物发生、降解和翻译。m6A稳态的改变与某些癌症的发生、进展、侵袭和转移有关。本研究旨在研究使用短发夹RNA (shRNA)敲除METTL3对人类结直肠癌和黑色素瘤癌细胞系的增殖和侵袭能力的影响。设计了针对METTL3 mRNA的特异性shRNA,并将其插入表达载体中。用METTL3-shRNA和扰变控制载体转染高侵袭性结直肠癌细胞株SW480和黑色素瘤细胞株A375,培养2周。收集细胞,用定量聚合酶链反应(qPCR)分析基因表达,用三维(3D)球体实验进行侵袭实验,用细胞周期和凋亡分析。在METTL3- shrna转染的细胞中,METTL3、VIM、SNAI1、SNAI2、ZEB1、CDH1和TGFB1基因的表达量与scramble-control转染的细胞相比显著下调。METTL3敲除后,b-catenin、N-cadherin、vimentin、ZEB1、前活性和活性MMP2、OCT4A、SOX2和MYC蛋白的表达也下调。转染METTL3-shRNA后,细胞增殖率明显降低,凋亡率明显升高。转染METTL3-shRNA后,癌细胞的迁移率和侵袭率均显著降低。这些发现强调了METTL3在结直肠癌和黑色素瘤癌细胞中的促癌功能,表明抑制METTL3可能是抑制多种癌症类型肿瘤的一种有希望的方法;尽管如此,要证实这些观察结果,还需要进一步的调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal tumor suppression by METTL3 gene knockdown in melanoma and colon cancer cells.

METTL3, an m6A methyltransferase, is integral to the regulation of messenger RNA (mRNA) biogenesis, degradation, and translation through the N6-methyladenosine (m6A) modification. Alterations in m6A homeostasis have been implicated in the development, progression, invasion, and metastasis of certain cancers. The present research aims to examine the consequences of METTL3 knockdown using short hairpin RNA (shRNA) on the proliferation and invasive capabilities of human colorectal and melanoma cancer cell lines. A specific shRNA against METTL3 mRNA was designed and inserted into an expression vector. Highly invasive colorectal cancer cell line SW480 and melanoma cell line A375 were cultured and transfected by METTL3-shRNA and scramble-control vectors and kept under culture condition for 2 weeks. The cells were harvested for analysis of gene expression by quantitative polymerase chain reaction (qPCR), invasion assay using three-dimensional (3D) spheroid assay and cell cycle and apoptosis analyses. In the METTL3-shRNA transfected cells, the expression of METTL3, VIM, SNAI1, SNAI2, ZEB1, CDH1, and TGFB1 genes were downregulated significantly compared with the scramble-control transfected cells. Expression of b-catenin, N-cadherin, vimentin, ZEB1, pro- and active MMP2, OCT4A, SOX2, and MYC proteins were also downregulated following METTL3 knockdown. Transfection by METTL3-shRNA reduced proliferation rate of the cells and increased the apoptotic rate significantly. Both migration and invasion rate of the cancer cells transfected with METTL3-shRNA were significantly decreased. These findings highlight the pro-oncogenic function of METTL3 in colorectal and melanoma cancer cells, indicating that inhibiting METTL3 could be a promising approach for tumor suppression across multiple cancer types; nonetheless, further investigation is essential to confirm these observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Histochemistry and Cell Biology
Histochemistry and Cell Biology 生物-细胞生物学
CiteScore
4.90
自引率
8.70%
发文量
112
审稿时长
1 months
期刊介绍: Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信