一种定制的水t迷宫装置和方案:一种优化的、可靠的、可重复的方法,用于筛选实验室小鼠的学习、记忆和执行功能。

IF 2.6 3区 医学 Q2 BEHAVIORAL SCIENCES
Frontiers in Behavioral Neuroscience Pub Date : 2024-12-10 eCollection Date: 2024-01-01 DOI:10.3389/fnbeh.2024.1492327
Jeremy Davidson Bailoo, Susan E Bergeson, Igor Ponomarev, Joshua O Willms, Brent R Kisby, Gail A Cornwall, Clinton C MacDonald, J Josh Lawrence, Vadivel Ganapathy, Sathish Sivaprakasam, Praneetha Panthagani, Scott Trasti, Justin A Varholick, Michael Findlater, Amrika Deonarine
{"title":"一种定制的水t迷宫装置和方案:一种优化的、可靠的、可重复的方法,用于筛选实验室小鼠的学习、记忆和执行功能。","authors":"Jeremy Davidson Bailoo, Susan E Bergeson, Igor Ponomarev, Joshua O Willms, Brent R Kisby, Gail A Cornwall, Clinton C MacDonald, J Josh Lawrence, Vadivel Ganapathy, Sathish Sivaprakasam, Praneetha Panthagani, Scott Trasti, Justin A Varholick, Michael Findlater, Amrika Deonarine","doi":"10.3389/fnbeh.2024.1492327","DOIUrl":null,"url":null,"abstract":"<p><p>The Morris Water Maze (MWM) is the most commonly used assay for evaluating learning and memory in laboratory mice. Despite its widespread use, contemporary reviews have highlighted substantial methodological variation in experimental protocols and that the associated testing procedures are acutely (each trial) and chronically (testing across days) stressful; stress impairs attention, memory consolidation and the retrieval of learned information. Moreover, the interpretation of behavior within the MWM is often difficult because of wall hugging, non-spatial swim strategies, floating, and jumping off the escape platform. Together, these issues may compromise the reproducibility, generalizability, and predictability of experimental results, as well as animal welfare. To address these issues, and as an initial proof-of-principle, we first narrowed the spatial dimensions of the MWM by using a T-insert, which constrained and reduced the overall length of time/distance that the animal must swim in order to navigate to the escape platform, thus reducing stress and off-task behavior. Given the robust performance observed across spatial acquisition (learning and memory) as well as during reversal learning (executive function), we further reduced (by 43%) the overall distance and time that the animal must swim in order to find the escape platform in a bespoke standalone Water T-Maze (WTM). We show, across five experiments, procedural refinements to our protocol and demonstrate robust, reliable and reproducible indicators of learning, memory and executive functioning in a task that is also significantly more efficient (3 days of testing within the WTM vs. 11 days of testing within the MWM). Taken together, our WTM apparatus and protocol are a significant improvement over other water-based apparatuses and protocols for evaluating learning, memory, and executive functioning in laboratory mice.</p>","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"18 ","pages":"1492327"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666379/pdf/","citationCount":"0","resultStr":"{\"title\":\"A bespoke water T-maze apparatus and protocol: an optimized, reliable, and repeatable method for screening learning, memory, and executive functioning in laboratory mice.\",\"authors\":\"Jeremy Davidson Bailoo, Susan E Bergeson, Igor Ponomarev, Joshua O Willms, Brent R Kisby, Gail A Cornwall, Clinton C MacDonald, J Josh Lawrence, Vadivel Ganapathy, Sathish Sivaprakasam, Praneetha Panthagani, Scott Trasti, Justin A Varholick, Michael Findlater, Amrika Deonarine\",\"doi\":\"10.3389/fnbeh.2024.1492327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Morris Water Maze (MWM) is the most commonly used assay for evaluating learning and memory in laboratory mice. Despite its widespread use, contemporary reviews have highlighted substantial methodological variation in experimental protocols and that the associated testing procedures are acutely (each trial) and chronically (testing across days) stressful; stress impairs attention, memory consolidation and the retrieval of learned information. Moreover, the interpretation of behavior within the MWM is often difficult because of wall hugging, non-spatial swim strategies, floating, and jumping off the escape platform. Together, these issues may compromise the reproducibility, generalizability, and predictability of experimental results, as well as animal welfare. To address these issues, and as an initial proof-of-principle, we first narrowed the spatial dimensions of the MWM by using a T-insert, which constrained and reduced the overall length of time/distance that the animal must swim in order to navigate to the escape platform, thus reducing stress and off-task behavior. Given the robust performance observed across spatial acquisition (learning and memory) as well as during reversal learning (executive function), we further reduced (by 43%) the overall distance and time that the animal must swim in order to find the escape platform in a bespoke standalone Water T-Maze (WTM). We show, across five experiments, procedural refinements to our protocol and demonstrate robust, reliable and reproducible indicators of learning, memory and executive functioning in a task that is also significantly more efficient (3 days of testing within the WTM vs. 11 days of testing within the MWM). Taken together, our WTM apparatus and protocol are a significant improvement over other water-based apparatuses and protocols for evaluating learning, memory, and executive functioning in laboratory mice.</p>\",\"PeriodicalId\":12368,\"journal\":{\"name\":\"Frontiers in Behavioral Neuroscience\",\"volume\":\"18 \",\"pages\":\"1492327\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666379/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Behavioral Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbeh.2024.1492327\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnbeh.2024.1492327","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

Morris水迷宫(MWM)是最常用的用于评估实验室小鼠学习和记忆的方法。尽管它被广泛使用,但当代的评论强调了实验方案的方法差异,以及相关的测试程序是急性(每次试验)和慢性(几天测试)的压力;压力会损害注意力、记忆巩固和对所学信息的检索。此外,由于抱墙、非空间游泳策略、漂浮和跳下逃生平台,MWM内的行为通常很难解释。总之,这些问题可能会损害实验结果的可重复性、普遍性和可预测性,以及动物福利。为了解决这些问题,作为初步的原理证明,我们首先通过使用t型插入来缩小MWM的空间尺寸,这限制并减少了动物为了导航到逃生平台而必须游泳的总时间/距离,从而减少了压力和非任务行为。考虑到在空间获取(学习和记忆)以及逆向学习(执行功能)过程中观察到的强大表现,我们进一步减少了(43%)动物为了在定制的独立水t迷宫(WTM)中找到逃生平台而必须游泳的总距离和时间。通过五个实验,我们展示了对我们的方案的程序改进,并展示了在任务中学习、记忆和执行功能的稳健、可靠和可重复的指标,这也显著提高了效率(WTM内的3 天测试与MWM内的11 天测试)。综上所述,我们的WTM仪器和方案在评估实验室小鼠的学习、记忆和执行功能方面比其他水基仪器和方案有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bespoke water T-maze apparatus and protocol: an optimized, reliable, and repeatable method for screening learning, memory, and executive functioning in laboratory mice.

The Morris Water Maze (MWM) is the most commonly used assay for evaluating learning and memory in laboratory mice. Despite its widespread use, contemporary reviews have highlighted substantial methodological variation in experimental protocols and that the associated testing procedures are acutely (each trial) and chronically (testing across days) stressful; stress impairs attention, memory consolidation and the retrieval of learned information. Moreover, the interpretation of behavior within the MWM is often difficult because of wall hugging, non-spatial swim strategies, floating, and jumping off the escape platform. Together, these issues may compromise the reproducibility, generalizability, and predictability of experimental results, as well as animal welfare. To address these issues, and as an initial proof-of-principle, we first narrowed the spatial dimensions of the MWM by using a T-insert, which constrained and reduced the overall length of time/distance that the animal must swim in order to navigate to the escape platform, thus reducing stress and off-task behavior. Given the robust performance observed across spatial acquisition (learning and memory) as well as during reversal learning (executive function), we further reduced (by 43%) the overall distance and time that the animal must swim in order to find the escape platform in a bespoke standalone Water T-Maze (WTM). We show, across five experiments, procedural refinements to our protocol and demonstrate robust, reliable and reproducible indicators of learning, memory and executive functioning in a task that is also significantly more efficient (3 days of testing within the WTM vs. 11 days of testing within the MWM). Taken together, our WTM apparatus and protocol are a significant improvement over other water-based apparatuses and protocols for evaluating learning, memory, and executive functioning in laboratory mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Behavioral Neuroscience
Frontiers in Behavioral Neuroscience BEHAVIORAL SCIENCES-NEUROSCIENCES
CiteScore
4.70
自引率
3.30%
发文量
506
审稿时长
6-12 weeks
期刊介绍: Frontiers in Behavioral Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the neural mechanisms underlying behavior. Field Chief Editor Nuno Sousa at the Instituto de Pesquisa em Ciências da Vida e da Saúde (ICVS) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. This journal publishes major insights into the neural mechanisms of animal and human behavior, and welcomes articles studying the interplay between behavior and its neurobiological basis at all levels: from molecular biology and genetics, to morphological, biochemical, neurochemical, electrophysiological, neuroendocrine, pharmacological, and neuroimaging studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信