调节模型神经元生物活性的DNA适体。

IF 6.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Therapy. Nucleic Acids Pub Date : 2024-11-16 eCollection Date: 2024-12-10 DOI:10.1016/j.omtn.2024.102392
Jenelle Rolli, Keenan Pearson, Brandon Wilbanks, Sybil C L Hrstka, Andrew P Minotti, Lorenz Studer, Arthur E Warrington, Nathan P Staff, L James Maher
{"title":"调节模型神经元生物活性的DNA适体。","authors":"Jenelle Rolli, Keenan Pearson, Brandon Wilbanks, Sybil C L Hrstka, Andrew P Minotti, Lorenz Studer, Arthur E Warrington, Nathan P Staff, L James Maher","doi":"10.1016/j.omtn.2024.102392","DOIUrl":null,"url":null,"abstract":"<p><p>There is an urgent need for agents that promote health and regeneration of cells and tissues, specifically to treat diseases of the aging nervous system. Age-associated nervous system degeneration and various diseases are driven by many different biochemical stresses, often making it difficult to target any one disease cause. Our laboratory has previously identified DNA aptamers with apparent regenerative properties in murine models of multiple sclerosis by selecting aptamers that bind oligodendrocyte membrane preparations. Here, we selected from vast libraries of molecules (∼10<sup>14</sup> unique DNAs) those with the ability to bind cultured human SH-SY5Y neuroblastoma cells as a neuronal model, followed by screening for aptamers capable of eliciting biological responses, with validation of binding in differentiated SH-SY5Y, human induced pluripotent stem cell (iPSC)-derived sensory neurons, and human embryonic stem cell (hESC)-derived cortical neurons. This demonstrates a proof-of-concept workflow to identify biologically active aptamers by cycles of cell selection.</p>","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"35 4","pages":"102392"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667033/pdf/","citationCount":"0","resultStr":"{\"title\":\"DNA aptamers that modulate biological activity of model neurons.\",\"authors\":\"Jenelle Rolli, Keenan Pearson, Brandon Wilbanks, Sybil C L Hrstka, Andrew P Minotti, Lorenz Studer, Arthur E Warrington, Nathan P Staff, L James Maher\",\"doi\":\"10.1016/j.omtn.2024.102392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is an urgent need for agents that promote health and regeneration of cells and tissues, specifically to treat diseases of the aging nervous system. Age-associated nervous system degeneration and various diseases are driven by many different biochemical stresses, often making it difficult to target any one disease cause. Our laboratory has previously identified DNA aptamers with apparent regenerative properties in murine models of multiple sclerosis by selecting aptamers that bind oligodendrocyte membrane preparations. Here, we selected from vast libraries of molecules (∼10<sup>14</sup> unique DNAs) those with the ability to bind cultured human SH-SY5Y neuroblastoma cells as a neuronal model, followed by screening for aptamers capable of eliciting biological responses, with validation of binding in differentiated SH-SY5Y, human induced pluripotent stem cell (iPSC)-derived sensory neurons, and human embryonic stem cell (hESC)-derived cortical neurons. This demonstrates a proof-of-concept workflow to identify biologically active aptamers by cycles of cell selection.</p>\",\"PeriodicalId\":18821,\"journal\":{\"name\":\"Molecular Therapy. Nucleic Acids\",\"volume\":\"35 4\",\"pages\":\"102392\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667033/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy. Nucleic Acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtn.2024.102392\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/10 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2024.102392","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

目前迫切需要一种促进细胞和组织健康和再生的药物,特别是用于治疗衰老的神经系统疾病。与年龄相关的神经系统退化和各种疾病是由许多不同的生化压力驱动的,通常很难针对任何一种疾病病因。我们的实验室之前通过选择结合少突胶质细胞膜制剂的核酸适配体,在多发性硬化症小鼠模型中发现了具有明显再生特性的DNA适配体。在这里,我们从大量的分子库(约1014个独特的dna)中选择那些能够结合培养的人类SH-SY5Y神经母细胞瘤细胞作为神经元模型的分子,然后筛选能够引发生物反应的适体,并验证在分化的SH-SY5Y、人类诱导多能干细胞(iPSC)衍生的感觉神经元和人类胚胎干细胞(hESC)衍生的皮质神经元中的结合。这证明了通过细胞选择周期来识别生物活性适配体的概念验证工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA aptamers that modulate biological activity of model neurons.

There is an urgent need for agents that promote health and regeneration of cells and tissues, specifically to treat diseases of the aging nervous system. Age-associated nervous system degeneration and various diseases are driven by many different biochemical stresses, often making it difficult to target any one disease cause. Our laboratory has previously identified DNA aptamers with apparent regenerative properties in murine models of multiple sclerosis by selecting aptamers that bind oligodendrocyte membrane preparations. Here, we selected from vast libraries of molecules (∼1014 unique DNAs) those with the ability to bind cultured human SH-SY5Y neuroblastoma cells as a neuronal model, followed by screening for aptamers capable of eliciting biological responses, with validation of binding in differentiated SH-SY5Y, human induced pluripotent stem cell (iPSC)-derived sensory neurons, and human embryonic stem cell (hESC)-derived cortical neurons. This demonstrates a proof-of-concept workflow to identify biologically active aptamers by cycles of cell selection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy. Nucleic Acids
Molecular Therapy. Nucleic Acids MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
15.40
自引率
1.10%
发文量
336
审稿时长
20 weeks
期刊介绍: Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信