通过结合crispr介导的内源性Gata4激活和外源性Mef2c和Tbx5表达直接心脏重编程。

IF 6.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Therapy. Nucleic Acids Pub Date : 2024-11-15 eCollection Date: 2024-12-10 DOI:10.1016/j.omtn.2024.102390
Peisen Huang, Jun Xu, Benjamin Keepers, Yifang Xie, David Near, Yangxi Xu, James Rock Hua, Brian Spurlock, Shea Ricketts, Jiandong Liu, Li Wang, Li Qian
{"title":"通过结合crispr介导的内源性Gata4激活和外源性Mef2c和Tbx5表达直接心脏重编程。","authors":"Peisen Huang, Jun Xu, Benjamin Keepers, Yifang Xie, David Near, Yangxi Xu, James Rock Hua, Brian Spurlock, Shea Ricketts, Jiandong Liu, Li Wang, Li Qian","doi":"10.1016/j.omtn.2024.102390","DOIUrl":null,"url":null,"abstract":"<p><p>Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) can be achieved by ectopic expression of cardiac transcription factors (TFs) via viral vectors. However, risks like genomic mutations, viral toxicity, and immune response limited its clinical application. Transactivation of endogenous TFs emerges as an alternative approach that may partially mitigate some of the risks. In this study, we utilized a modified CRISPRa/dCas9 strategy to transactivate endogenous reprogramming factors MEF2C, GATA4, and TBX5 (MGT) to induce iCMs from both mouse and human fibroblasts. We identified single-guide RNAs (sgRNAs) targeting promoters and enhancers of the TFs capable of activating various degrees of endogenous gene expression. CRISPRa-mediated <i>Gata4</i> activation, combined with exogenous expression of <i>Mef2c</i> and <i>Tbx5,</i> successfully converted fibroblasts into iCMs. Despite extensive sgRNA screening, transactivation of <i>Mef2c</i> and <i>Tbx5</i> via CRISPRa remained less effective, potentially due to <i>de novo</i> epigenetic barriers. While future work and refined technologies are needed to determine whether cardiac reprogramming could be achieved solely through CRISPRa activation of endogenous factors, our findings provide proof of concept that reliance on exogenous TFs for reprogramming can be reduced through CRISPRa-mediated activation of endogenous factors, particularly <i>Gata4</i>, offering a novel strategy to convert scar-forming fibroblasts into iCMs for regenerative purposes.</p>","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"35 4","pages":"102390"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666955/pdf/","citationCount":"0","resultStr":"{\"title\":\"Direct cardiac reprogramming via combined CRISPRa-mediated endogenous Gata4 activation and exogenous Mef2c and Tbx5 expression.\",\"authors\":\"Peisen Huang, Jun Xu, Benjamin Keepers, Yifang Xie, David Near, Yangxi Xu, James Rock Hua, Brian Spurlock, Shea Ricketts, Jiandong Liu, Li Wang, Li Qian\",\"doi\":\"10.1016/j.omtn.2024.102390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) can be achieved by ectopic expression of cardiac transcription factors (TFs) via viral vectors. However, risks like genomic mutations, viral toxicity, and immune response limited its clinical application. Transactivation of endogenous TFs emerges as an alternative approach that may partially mitigate some of the risks. In this study, we utilized a modified CRISPRa/dCas9 strategy to transactivate endogenous reprogramming factors MEF2C, GATA4, and TBX5 (MGT) to induce iCMs from both mouse and human fibroblasts. We identified single-guide RNAs (sgRNAs) targeting promoters and enhancers of the TFs capable of activating various degrees of endogenous gene expression. CRISPRa-mediated <i>Gata4</i> activation, combined with exogenous expression of <i>Mef2c</i> and <i>Tbx5,</i> successfully converted fibroblasts into iCMs. Despite extensive sgRNA screening, transactivation of <i>Mef2c</i> and <i>Tbx5</i> via CRISPRa remained less effective, potentially due to <i>de novo</i> epigenetic barriers. While future work and refined technologies are needed to determine whether cardiac reprogramming could be achieved solely through CRISPRa activation of endogenous factors, our findings provide proof of concept that reliance on exogenous TFs for reprogramming can be reduced through CRISPRa-mediated activation of endogenous factors, particularly <i>Gata4</i>, offering a novel strategy to convert scar-forming fibroblasts into iCMs for regenerative purposes.</p>\",\"PeriodicalId\":18821,\"journal\":{\"name\":\"Molecular Therapy. Nucleic Acids\",\"volume\":\"35 4\",\"pages\":\"102390\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666955/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy. Nucleic Acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtn.2024.102390\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/10 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2024.102390","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

通过病毒载体异位表达心脏转录因子(TFs)可以实现成纤维细胞直接重编程为诱导心肌细胞(iCMs)。然而,基因组突变、病毒毒性和免疫反应等风险限制了其临床应用。内源性tf的反激活作为一种替代方法出现,可能部分减轻一些风险。在这项研究中,我们利用改良的CRISPRa/dCas9策略反激活内源性重编程因子MEF2C、GATA4和TBX5 (MGT),诱导小鼠和人成纤维细胞的iCMs。我们发现了靶向tf启动子和增强子的单导rna (sgRNAs),它们能够激活不同程度的内源基因表达。crispr介导的Gata4激活,结合外源表达Mef2c和Tbx5,成功地将成纤维细胞转化为iCMs。尽管进行了广泛的sgRNA筛选,但通过CRISPRa转激活Mef2c和Tbx5仍然不太有效,这可能是由于新的表观遗传屏障。虽然未来的工作和完善的技术需要确定心脏重编程是否可以仅仅通过CRISPRa激活内源性因子来实现,但我们的研究结果提供了一个概念证明,即通过CRISPRa介导的内源性因子,特别是Gata4的激活,可以减少对外源性tf进行重编程的依赖,提供了一种将瘢痕形成的成纤维细胞转化为iCMs用于再生目的的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct cardiac reprogramming via combined CRISPRa-mediated endogenous Gata4 activation and exogenous Mef2c and Tbx5 expression.

Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) can be achieved by ectopic expression of cardiac transcription factors (TFs) via viral vectors. However, risks like genomic mutations, viral toxicity, and immune response limited its clinical application. Transactivation of endogenous TFs emerges as an alternative approach that may partially mitigate some of the risks. In this study, we utilized a modified CRISPRa/dCas9 strategy to transactivate endogenous reprogramming factors MEF2C, GATA4, and TBX5 (MGT) to induce iCMs from both mouse and human fibroblasts. We identified single-guide RNAs (sgRNAs) targeting promoters and enhancers of the TFs capable of activating various degrees of endogenous gene expression. CRISPRa-mediated Gata4 activation, combined with exogenous expression of Mef2c and Tbx5, successfully converted fibroblasts into iCMs. Despite extensive sgRNA screening, transactivation of Mef2c and Tbx5 via CRISPRa remained less effective, potentially due to de novo epigenetic barriers. While future work and refined technologies are needed to determine whether cardiac reprogramming could be achieved solely through CRISPRa activation of endogenous factors, our findings provide proof of concept that reliance on exogenous TFs for reprogramming can be reduced through CRISPRa-mediated activation of endogenous factors, particularly Gata4, offering a novel strategy to convert scar-forming fibroblasts into iCMs for regenerative purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy. Nucleic Acids
Molecular Therapy. Nucleic Acids MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
15.40
自引率
1.10%
发文量
336
审稿时长
20 weeks
期刊介绍: Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信