{"title":"黄体酮受体dna结合域和其他类固醇激素受体成员的硅筛选。","authors":"Tholasi Nadhan Navien, Ramesh Thevendran, Marimuthu Citartan","doi":"10.1016/j.ab.2024.115752","DOIUrl":null,"url":null,"abstract":"<p><p>Progesterone receptor is one of the markers used in antibody-based immunohistochemistry for the diagnostics of breast cancer. The shortcomings of antibodies raise the need to focus on alternative molecular recognition. Aptamers are chosen due to their many advantages as compared to antibodies. However, the rigor of conventional SELEX intensifies the efforts to select DNA aptamers using in silico-docking approach. In this study, we performed in silico selection and experimental validation of DNA aptamers against the progesterone receptor DNA binding domain (PR DBD) using the ssDNA sequences derived from human progesterone response elements (PREs). Firstly, a library of sixty-four different ssDNA was subjected to secondary and tertiary structural determination prior to docking using PatchDock. PRDBDapt17 appeared to be the best candidate, with the highest docking scores of 11334. Molecular dynamic simulation also substantiates PRDBDapt17 as the most potent aptamer. This aptamer, PRDBDapt17 was validated by using direct ELASA. Direct ELASA demonstrated a limit of detection of 3.91 nM while the equilibrium dissociation constant was estimated at 366.6 nM. As PRDBDapt17 also interacts with estrogen receptor and androgen receptor, it can also be a potential universal binder of steroid hormone receptors. PRDBDapt17 can be used in the diagnostics of breast cancer.</p>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":" ","pages":"115752"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico selection against progesterone receptor DNA-binding domain.\",\"authors\":\"Tholasi Nadhan Navien, Ramesh Thevendran, Marimuthu Citartan\",\"doi\":\"10.1016/j.ab.2024.115752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Progesterone receptor is one of the markers used in antibody-based immunohistochemistry for the diagnostics of breast cancer. The shortcomings of antibodies raise the need to focus on alternative molecular recognition. Aptamers are chosen due to their many advantages as compared to antibodies. However, the rigor of conventional SELEX intensifies the efforts to select DNA aptamers using in silico-docking approach. In this study, we performed in silico selection and experimental validation of DNA aptamers against the progesterone receptor DNA binding domain (PR DBD) using the ssDNA sequences derived from human progesterone response elements (PREs). Firstly, a library of sixty-four different ssDNA was subjected to secondary and tertiary structural determination prior to docking using PatchDock. PRDBDapt17 appeared to be the best candidate, with the highest docking scores of 11334. Molecular dynamic simulation also substantiates PRDBDapt17 as the most potent aptamer. This aptamer, PRDBDapt17 was validated by using direct ELASA. Direct ELASA demonstrated a limit of detection of 3.91 nM while the equilibrium dissociation constant was estimated at 366.6 nM. As PRDBDapt17 also interacts with estrogen receptor and androgen receptor, it can also be a potential universal binder of steroid hormone receptors. PRDBDapt17 can be used in the diagnostics of breast cancer.</p>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\" \",\"pages\":\"115752\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ab.2024.115752\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ab.2024.115752","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
In silico selection against progesterone receptor DNA-binding domain.
Progesterone receptor is one of the markers used in antibody-based immunohistochemistry for the diagnostics of breast cancer. The shortcomings of antibodies raise the need to focus on alternative molecular recognition. Aptamers are chosen due to their many advantages as compared to antibodies. However, the rigor of conventional SELEX intensifies the efforts to select DNA aptamers using in silico-docking approach. In this study, we performed in silico selection and experimental validation of DNA aptamers against the progesterone receptor DNA binding domain (PR DBD) using the ssDNA sequences derived from human progesterone response elements (PREs). Firstly, a library of sixty-four different ssDNA was subjected to secondary and tertiary structural determination prior to docking using PatchDock. PRDBDapt17 appeared to be the best candidate, with the highest docking scores of 11334. Molecular dynamic simulation also substantiates PRDBDapt17 as the most potent aptamer. This aptamer, PRDBDapt17 was validated by using direct ELASA. Direct ELASA demonstrated a limit of detection of 3.91 nM while the equilibrium dissociation constant was estimated at 366.6 nM. As PRDBDapt17 also interacts with estrogen receptor and androgen receptor, it can also be a potential universal binder of steroid hormone receptors. PRDBDapt17 can be used in the diagnostics of breast cancer.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.