黄体酮受体dna结合域和其他类固醇激素受体成员的硅筛选。

IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Analytical biochemistry Pub Date : 2025-04-01 Epub Date: 2024-12-22 DOI:10.1016/j.ab.2024.115752
Tholasi Nadhan Navien, Ramesh Thevendran, Marimuthu Citartan
{"title":"黄体酮受体dna结合域和其他类固醇激素受体成员的硅筛选。","authors":"Tholasi Nadhan Navien, Ramesh Thevendran, Marimuthu Citartan","doi":"10.1016/j.ab.2024.115752","DOIUrl":null,"url":null,"abstract":"<p><p>Progesterone receptor is one of the markers used in antibody-based immunohistochemistry for the diagnostics of breast cancer. The shortcomings of antibodies raise the need to focus on alternative molecular recognition. Aptamers are chosen due to their many advantages as compared to antibodies. However, the rigor of conventional SELEX intensifies the efforts to select DNA aptamers using in silico-docking approach. In this study, we performed in silico selection and experimental validation of DNA aptamers against the progesterone receptor DNA binding domain (PR DBD) using the ssDNA sequences derived from human progesterone response elements (PREs). Firstly, a library of sixty-four different ssDNA was subjected to secondary and tertiary structural determination prior to docking using PatchDock. PRDBDapt17 appeared to be the best candidate, with the highest docking scores of 11334. Molecular dynamic simulation also substantiates PRDBDapt17 as the most potent aptamer. This aptamer, PRDBDapt17 was validated by using direct ELASA. Direct ELASA demonstrated a limit of detection of 3.91 nM while the equilibrium dissociation constant was estimated at 366.6 nM. As PRDBDapt17 also interacts with estrogen receptor and androgen receptor, it can also be a potential universal binder of steroid hormone receptors. PRDBDapt17 can be used in the diagnostics of breast cancer.</p>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":" ","pages":"115752"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico selection against progesterone receptor DNA-binding domain.\",\"authors\":\"Tholasi Nadhan Navien, Ramesh Thevendran, Marimuthu Citartan\",\"doi\":\"10.1016/j.ab.2024.115752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Progesterone receptor is one of the markers used in antibody-based immunohistochemistry for the diagnostics of breast cancer. The shortcomings of antibodies raise the need to focus on alternative molecular recognition. Aptamers are chosen due to their many advantages as compared to antibodies. However, the rigor of conventional SELEX intensifies the efforts to select DNA aptamers using in silico-docking approach. In this study, we performed in silico selection and experimental validation of DNA aptamers against the progesterone receptor DNA binding domain (PR DBD) using the ssDNA sequences derived from human progesterone response elements (PREs). Firstly, a library of sixty-four different ssDNA was subjected to secondary and tertiary structural determination prior to docking using PatchDock. PRDBDapt17 appeared to be the best candidate, with the highest docking scores of 11334. Molecular dynamic simulation also substantiates PRDBDapt17 as the most potent aptamer. This aptamer, PRDBDapt17 was validated by using direct ELASA. Direct ELASA demonstrated a limit of detection of 3.91 nM while the equilibrium dissociation constant was estimated at 366.6 nM. As PRDBDapt17 also interacts with estrogen receptor and androgen receptor, it can also be a potential universal binder of steroid hormone receptors. PRDBDapt17 can be used in the diagnostics of breast cancer.</p>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\" \",\"pages\":\"115752\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ab.2024.115752\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ab.2024.115752","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

孕酮受体是基于抗体的免疫组化诊断乳腺癌的标志物之一。抗体的缺点引起了对替代分子识别的关注。与抗体相比,选择适体是因为它们有许多优点。然而,传统SELEX的严格性加强了使用硅对接方法选择DNA适体的努力。在这项研究中,我们利用来自人孕激素反应元件(PREs)的ssDNA序列进行了针对孕激素受体DNA结合域(PR DBD)的DNA适体的硅筛选和实验验证。首先,在使用PatchDock对接之前,对64种不同的ssDNA进行了二级和三级结构测定。PRDBDapt17似乎是最佳候选者,其对接得分最高,为11334。分子动力学模拟也证实了PRDBDapt17是最有效的适体。该适体PRDBDapt17通过直接ELASA验证。直接ELASA的检测限为3.91 nM,而平衡解离常数估计为366.6 nM。由于PRDBDapt17还与雌激素受体和雄激素受体相互作用,它也可以作为类固醇激素受体的通用结合物。PRDBDapt17可用于乳腺癌的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In silico selection against progesterone receptor DNA-binding domain.

Progesterone receptor is one of the markers used in antibody-based immunohistochemistry for the diagnostics of breast cancer. The shortcomings of antibodies raise the need to focus on alternative molecular recognition. Aptamers are chosen due to their many advantages as compared to antibodies. However, the rigor of conventional SELEX intensifies the efforts to select DNA aptamers using in silico-docking approach. In this study, we performed in silico selection and experimental validation of DNA aptamers against the progesterone receptor DNA binding domain (PR DBD) using the ssDNA sequences derived from human progesterone response elements (PREs). Firstly, a library of sixty-four different ssDNA was subjected to secondary and tertiary structural determination prior to docking using PatchDock. PRDBDapt17 appeared to be the best candidate, with the highest docking scores of 11334. Molecular dynamic simulation also substantiates PRDBDapt17 as the most potent aptamer. This aptamer, PRDBDapt17 was validated by using direct ELASA. Direct ELASA demonstrated a limit of detection of 3.91 nM while the equilibrium dissociation constant was estimated at 366.6 nM. As PRDBDapt17 also interacts with estrogen receptor and androgen receptor, it can also be a potential universal binder of steroid hormone receptors. PRDBDapt17 can be used in the diagnostics of breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical biochemistry
Analytical biochemistry 生物-分析化学
CiteScore
5.70
自引率
0.00%
发文量
283
审稿时长
44 days
期刊介绍: The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field. The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology. The journal has been particularly active in: -Analytical techniques for biological molecules- Aptamer selection and utilization- Biosensors- Chromatography- Cloning, sequencing and mutagenesis- Electrochemical methods- Electrophoresis- Enzyme characterization methods- Immunological approaches- Mass spectrometry of proteins and nucleic acids- Metabolomics- Nano level techniques- Optical spectroscopy in all its forms. The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信