{"title":"boc保护的苯丙氨酸和色氨酸基二肽:一种广谱抗菌剂。","authors":"Arpita Halder, Ravikumar Pasupuleti, Subramaniyam Sivagnanam, Priyadip Das, Oindrilla Mukherjee","doi":"10.1002/bip.23649","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Dipeptides were constructed using hydrophobic amino acid residues following AMP prediction. After that Boc-modification was performed on the screened peptides and finally Boc-Phe-Trp-OMe and Boc-Trp-Trp-OMe were synthesized. Even though no inhibition zones were observed in agar well diffusion assays, minimum inhibitory concentration (MIC) analysis revealed anti-bacterial activity against both Gram-positive and Gram-negative bacteria, with MIC<sub>90</sub> ranging from 230 to 400 μg/mL. The crystal violet assay confirmed the dipeptides' biofilm eradication and disruption capabilities. Furthermore, membrane permeabilization assays indicated outer and inner membrane permeabilization, while SEM analysis revealed the formation of fibril and spherical nanostructures, likely contributing to this effect. The peptides also exhibited resistance to protein adsorption, non-cytotoxicity, and non-hemolytic properties, making them promising broad-spectrum anti-bacterial agents with biofilm eradication and disruption potential. This study concludes that Boc-protected phenylalanine- and tryptophan-based dipeptides can self-assemble and can be used as broad-spectrum anti-bacterial agents. The self-assembly of these peptides offers a versatile platform for designing biomaterials with tailored properties and functionalities. Research exploring the anti-bacterial potential of Boc-protected dipeptides has been limited, prompting our investigation to shed light on this overlooked area. Our analysis of synthesized Boc-protected dipeptides revealed notable anti-bacterial activity, marking a significant advancement. This finding suggests that these dipeptides could emerge as potent, broad-spectrum anti-bacterial agents, addressing the urgent need for effective treatments against bacterial resistance and opening new avenues in therapy. This study not only enhances our understanding of these dipeptides but also highlights their potential as innovative and efficacious anti-bacterial agents, making a substantial impact in the clinical field.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boc-Protected Phenylalanine and Tryptophan-Based Dipeptides: A Broad Spectrum Anti-Bacterial Agent\",\"authors\":\"Arpita Halder, Ravikumar Pasupuleti, Subramaniyam Sivagnanam, Priyadip Das, Oindrilla Mukherjee\",\"doi\":\"10.1002/bip.23649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Dipeptides were constructed using hydrophobic amino acid residues following AMP prediction. After that Boc-modification was performed on the screened peptides and finally Boc-Phe-Trp-OMe and Boc-Trp-Trp-OMe were synthesized. Even though no inhibition zones were observed in agar well diffusion assays, minimum inhibitory concentration (MIC) analysis revealed anti-bacterial activity against both Gram-positive and Gram-negative bacteria, with MIC<sub>90</sub> ranging from 230 to 400 μg/mL. The crystal violet assay confirmed the dipeptides' biofilm eradication and disruption capabilities. Furthermore, membrane permeabilization assays indicated outer and inner membrane permeabilization, while SEM analysis revealed the formation of fibril and spherical nanostructures, likely contributing to this effect. The peptides also exhibited resistance to protein adsorption, non-cytotoxicity, and non-hemolytic properties, making them promising broad-spectrum anti-bacterial agents with biofilm eradication and disruption potential. This study concludes that Boc-protected phenylalanine- and tryptophan-based dipeptides can self-assemble and can be used as broad-spectrum anti-bacterial agents. The self-assembly of these peptides offers a versatile platform for designing biomaterials with tailored properties and functionalities. Research exploring the anti-bacterial potential of Boc-protected dipeptides has been limited, prompting our investigation to shed light on this overlooked area. Our analysis of synthesized Boc-protected dipeptides revealed notable anti-bacterial activity, marking a significant advancement. This finding suggests that these dipeptides could emerge as potent, broad-spectrum anti-bacterial agents, addressing the urgent need for effective treatments against bacterial resistance and opening new avenues in therapy. This study not only enhances our understanding of these dipeptides but also highlights their potential as innovative and efficacious anti-bacterial agents, making a substantial impact in the clinical field.</p>\\n </div>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.23649\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23649","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Boc-Protected Phenylalanine and Tryptophan-Based Dipeptides: A Broad Spectrum Anti-Bacterial Agent
Dipeptides were constructed using hydrophobic amino acid residues following AMP prediction. After that Boc-modification was performed on the screened peptides and finally Boc-Phe-Trp-OMe and Boc-Trp-Trp-OMe were synthesized. Even though no inhibition zones were observed in agar well diffusion assays, minimum inhibitory concentration (MIC) analysis revealed anti-bacterial activity against both Gram-positive and Gram-negative bacteria, with MIC90 ranging from 230 to 400 μg/mL. The crystal violet assay confirmed the dipeptides' biofilm eradication and disruption capabilities. Furthermore, membrane permeabilization assays indicated outer and inner membrane permeabilization, while SEM analysis revealed the formation of fibril and spherical nanostructures, likely contributing to this effect. The peptides also exhibited resistance to protein adsorption, non-cytotoxicity, and non-hemolytic properties, making them promising broad-spectrum anti-bacterial agents with biofilm eradication and disruption potential. This study concludes that Boc-protected phenylalanine- and tryptophan-based dipeptides can self-assemble and can be used as broad-spectrum anti-bacterial agents. The self-assembly of these peptides offers a versatile platform for designing biomaterials with tailored properties and functionalities. Research exploring the anti-bacterial potential of Boc-protected dipeptides has been limited, prompting our investigation to shed light on this overlooked area. Our analysis of synthesized Boc-protected dipeptides revealed notable anti-bacterial activity, marking a significant advancement. This finding suggests that these dipeptides could emerge as potent, broad-spectrum anti-bacterial agents, addressing the urgent need for effective treatments against bacterial resistance and opening new avenues in therapy. This study not only enhances our understanding of these dipeptides but also highlights their potential as innovative and efficacious anti-bacterial agents, making a substantial impact in the clinical field.
期刊介绍:
Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.