Hema Chandran, Gnana Sekaran Ramakrishnan, Janaki Ramaiah Mekala, Sai Ramesh Anjaneyulu
{"title":"穿心莲提取物与金纳米颗粒的协同抗氧化、抗菌和吸附潜力评价。","authors":"Hema Chandran, Gnana Sekaran Ramakrishnan, Janaki Ramaiah Mekala, Sai Ramesh Anjaneyulu","doi":"10.1007/s12013-024-01627-9","DOIUrl":null,"url":null,"abstract":"<p><p>The present study introduces a minimalistic and cost-effective approach to synthesising Gold nanoparticles (AuNPs) using aqueous leaf extracts of Andrographis paniculata. In this synthesis, bioactive metabolites in the leaf extract act as reducing agents, converting Au³⁺ ions to metallic Au⁰, while proteins in the extract form a stabilising layer around the nanoparticles to prevent agglomeration and maintain particle size stability. The synthesised AuNPs were systematically characterised using a range of analytical techniques. UV-visible spectroscopy verified the presence of surface plasmon resonance, Fourier-transform infrared (FTIR) spectroscopy identified key functional groups, X-ray diffraction (XRD) revealed high crystallinity, and Transmission Electron Microscopy (TEM) indicated particle sizes ranging from approximately 4-15 nm. Additionally, Energy Dispersive X-ray (EDX) analysis confirmed the elemental composition of the nanoparticles. The biological efficacy of the synthesised AuNPs was rigorously evaluated. Antioxidant activity, assessed via DPPH and ABTS assays, showed notable results, with inhibition rates of 87.35% and 75% at a sample concentration of 100 µg/mL, respectively. In vitro cytotoxicity studies on Vero cells demonstrated a significant reduction in cell viability, reaching a minimum of 18.22% at the highest tested concentration of 100 µg/mL. Antimicrobial assays indicated strong activity against Salmonella typhii and Escherichia coli, with comparatively lower efficacy against Pseudomonas aeruginosa and Bacillus cereus. Furthermore, adsorption studies showed the AuNPs' high efficiency in removing 99% of crystal violet dye (500 mg/L) within 30 min under optimised conditions (pH 4.5, temperature 33 °C, and an AuNP dosage of 200 mg/L). This comprehensive analysis indicates that the synthesised AuNPs from A. paniculata exhibit promising properties for applications in biomedicine and wastewater treatment.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Synergistic Antioxidant, Anti-microbial and Adsorbent Potential of Andrographis Paniculata Extract and Gold Nanoparticles.\",\"authors\":\"Hema Chandran, Gnana Sekaran Ramakrishnan, Janaki Ramaiah Mekala, Sai Ramesh Anjaneyulu\",\"doi\":\"10.1007/s12013-024-01627-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study introduces a minimalistic and cost-effective approach to synthesising Gold nanoparticles (AuNPs) using aqueous leaf extracts of Andrographis paniculata. In this synthesis, bioactive metabolites in the leaf extract act as reducing agents, converting Au³⁺ ions to metallic Au⁰, while proteins in the extract form a stabilising layer around the nanoparticles to prevent agglomeration and maintain particle size stability. The synthesised AuNPs were systematically characterised using a range of analytical techniques. UV-visible spectroscopy verified the presence of surface plasmon resonance, Fourier-transform infrared (FTIR) spectroscopy identified key functional groups, X-ray diffraction (XRD) revealed high crystallinity, and Transmission Electron Microscopy (TEM) indicated particle sizes ranging from approximately 4-15 nm. Additionally, Energy Dispersive X-ray (EDX) analysis confirmed the elemental composition of the nanoparticles. The biological efficacy of the synthesised AuNPs was rigorously evaluated. Antioxidant activity, assessed via DPPH and ABTS assays, showed notable results, with inhibition rates of 87.35% and 75% at a sample concentration of 100 µg/mL, respectively. In vitro cytotoxicity studies on Vero cells demonstrated a significant reduction in cell viability, reaching a minimum of 18.22% at the highest tested concentration of 100 µg/mL. Antimicrobial assays indicated strong activity against Salmonella typhii and Escherichia coli, with comparatively lower efficacy against Pseudomonas aeruginosa and Bacillus cereus. Furthermore, adsorption studies showed the AuNPs' high efficiency in removing 99% of crystal violet dye (500 mg/L) within 30 min under optimised conditions (pH 4.5, temperature 33 °C, and an AuNP dosage of 200 mg/L). This comprehensive analysis indicates that the synthesised AuNPs from A. paniculata exhibit promising properties for applications in biomedicine and wastewater treatment.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01627-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01627-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evaluating the Synergistic Antioxidant, Anti-microbial and Adsorbent Potential of Andrographis Paniculata Extract and Gold Nanoparticles.
The present study introduces a minimalistic and cost-effective approach to synthesising Gold nanoparticles (AuNPs) using aqueous leaf extracts of Andrographis paniculata. In this synthesis, bioactive metabolites in the leaf extract act as reducing agents, converting Au³⁺ ions to metallic Au⁰, while proteins in the extract form a stabilising layer around the nanoparticles to prevent agglomeration and maintain particle size stability. The synthesised AuNPs were systematically characterised using a range of analytical techniques. UV-visible spectroscopy verified the presence of surface plasmon resonance, Fourier-transform infrared (FTIR) spectroscopy identified key functional groups, X-ray diffraction (XRD) revealed high crystallinity, and Transmission Electron Microscopy (TEM) indicated particle sizes ranging from approximately 4-15 nm. Additionally, Energy Dispersive X-ray (EDX) analysis confirmed the elemental composition of the nanoparticles. The biological efficacy of the synthesised AuNPs was rigorously evaluated. Antioxidant activity, assessed via DPPH and ABTS assays, showed notable results, with inhibition rates of 87.35% and 75% at a sample concentration of 100 µg/mL, respectively. In vitro cytotoxicity studies on Vero cells demonstrated a significant reduction in cell viability, reaching a minimum of 18.22% at the highest tested concentration of 100 µg/mL. Antimicrobial assays indicated strong activity against Salmonella typhii and Escherichia coli, with comparatively lower efficacy against Pseudomonas aeruginosa and Bacillus cereus. Furthermore, adsorption studies showed the AuNPs' high efficiency in removing 99% of crystal violet dye (500 mg/L) within 30 min under optimised conditions (pH 4.5, temperature 33 °C, and an AuNP dosage of 200 mg/L). This comprehensive analysis indicates that the synthesised AuNPs from A. paniculata exhibit promising properties for applications in biomedicine and wastewater treatment.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.