{"title":"多发性硬化症:胶质细胞在时间和空间的多样性。","authors":"Susanne M. Kooistra, Lucas Schirmer","doi":"10.1002/glia.24655","DOIUrl":null,"url":null,"abstract":"<p>Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 3","pages":"574-590"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784844/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiple Sclerosis: Glial Cell Diversity in Time and Space\",\"authors\":\"Susanne M. Kooistra, Lucas Schirmer\",\"doi\":\"10.1002/glia.24655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.</p>\",\"PeriodicalId\":174,\"journal\":{\"name\":\"Glia\",\"volume\":\"73 3\",\"pages\":\"574-590\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784844/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/glia.24655\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glia.24655","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Multiple Sclerosis: Glial Cell Diversity in Time and Space
Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.
期刊介绍:
GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.